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The magnetic properties of a film with competing surface and bulk anisotropies and nonuniform ferromag-
netic exchange interaction between atomic layers in the surface region have been investigated. The analytic
expressions for the criteria of stability of the perpendicular and in-plane states of a film of arbitrary thickness
have been derived in the framework of the layer by layer approach. We find that in films characterized by an
arbitrary layer-dependent ferromagnetic exchange interaction between atomic layers and layer-dependent an-
isotropy constants, a canted noncollinear magnetic state becomes favorable when neither the perpendicular nor
in-plane state is stable. We construct the diagram of the magnetic states of such a film and analyze the behavior
of the magnetic state depending on film thickness. The developed theory can be applied to describe a wide
class of quasi-two-dimensional magnetic systems demonstrating phase transitions between collinear and non-
collinear magnetic states. In particular, we use this theory to describe the two-step spin-reorientation transition
observed in bare Co /Au films.
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I. INTRODUCTION AND DESCRIPTION
OF THE THEORETICAL MODEL

Phase transitions are a common phenomenon encountered
in nearly every branch of physics.1 Modeling the driving
forces and the order of the transition often leads to a deeper
understanding of the underlying physical processes involved.
Magnetism is a rich field in this regard due to the vector
nature of the order parameter. Integral to this is the concept
of magnetic anisotropy, i.e., the difference in energy for vari-
ous orientations of the magnetization with respect to a
sample. The anisotropy plays a role in every magnetic
device.2,3 Understanding of spin reorientation transitions
�SRTs� driven by the change in a balance between the sur-
face, bulk, and shape anisotropy with film thickness or with
temperature is an important source of knowledge regarding
magnetic anisotropy. This information is invaluable because
ab initio calculations in even the simplest systems are diffi-
cult, and it is currently not feasible to predict, from first
principles, the behavior of complicated alloys and multilay-
ered systems at finite temperatures.

During the past several decades, considerable attention
has been paid to the experimental and theoretical investiga-
tion of ultrathin bare Fe, Co, and Ni films deposited on Au,
Ag, Cu, and Pd substrata.4–6 The obtained results are sum-
marized in the recent comprehensive review of Ref. 6. This
interest is triggered by the occurrence of novel magnetic
structures and phenomena in ultrathin films, which have no
counterparts in the respective bulk systems, and by their pos-
sible technological applications.2,3 Ultrathin magnetic films
exhibit highly anisotropic magnetic properties. The magnetic
state of an ultrathin film depends on its thickness that sub-
stantially enriches thin-film magnetism compared to three-
dimensional magnetism. One of the most interesting phe-
nomena occurring in thin magnetic films is the SRT with film
thickness. The polar SRT between the perpendicular and in-
plane magnetic directions m�→m� with increasing film
thickness N has been discovered in Fe /Cu�001�,7,8

Fe /Ag�001�,9–12 Co /Au�111� �Refs. 13–18� films. In con-
trast, Ni /Cu�001� films exhibit the reversed polar SRT, from
the in-plane to perpendicular orientation, m�→m�, with in-
creasing film thickness.19–21

The present work is devoted to the theoretical description
of the polar SRT m�→m� in bare Co /Au films with film
thickness in the framework of a simple phenomenological
model. The description of this phenomenon requires a model
that would adequately describe the magnetic properties of
Co /Au films. However, in the predominant majority of pub-
lished papers, the experimental data are compared with the
solution of the following inadequate primitive model for the
energy of the magnetic anisotropy of a thin film:

Eanis = KB sin2 � +
KS

d
sin2 � . �1�

Here, KB and KS are bulk and surface anisotropy constants,
respectively. The magnitudes of these constants are to be
obtained from the comparison of the theoretical results and
experimental data. � is an angle between the magnetization
vector and the film plane and d is the film thickness. There
are two principal mechanisms, which could explain the per-
pendicular anisotropy in thin Co /Au films. The first is the
broken symmetry of Co atoms at the Co film surface and the
Co-Au interface,22 and the second involves the magnetoelas-
tic properties of the Co-Au interfacial alloy.23 At present, it is
well established that interfacial alloying is the dominant
mechanism.23 Bearing this in mind in Eq. �1�, we take into
account the surface anisotropy only at one side of the film,
namely, at the interface.

Treating the SRT m�→m� within the model described by
Eq. �1�, one makes the assumption about a direct competition
between the interface anisotropy energy that favors the per-
pendicular orientation m� �KS�0� and the bulk anisotropy
energy that favors the in-plane orientation m� �KB�0�. If the
film thickness d is small, then the interface anisotropy energy
dominates and, thus, the film is in the perpendicular state. An
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increase in film thickness leads to an increase in the bulk
contribution to the anisotropy energy, eventually leading to
the occurrence of the SRT to the in-plane state. The treatment
of the SRT within model �1� is based on the assumption that
the energy of the exchange interaction between atomic layers
is infinitely large. Because of that, the magnetization vectors
of all the atomic layers are parallel to each other and char-
acterized by a single orientation angle �. In this limiting
case, the terms describing the exchange interaction between
neighbor atomic layers do not depend on the orientation
angle; consequently, they are not taken into account in the
model �1�. If the exchange interaction has a finite magnitude
at least between the interface and the next atomic layers, the
orientation of the magnetization vector of the surface layer is
determined by the competition between the surface aniso-
tropy energy and the exchange interaction between surface
and subsurface layers rather than by the competition between
surface and bulk anisotropy energies. Hence, in the case of a
finite exchange interaction, the assumption about the direct
competition between surface and bulk anisotropy energies is
not quite correct.

There are only two stable solutions in the model �1�: per-
pendicular m� and in-plane m�. As a consequence, the SRT
m�→m� described by model �1� is discontinuous. The nature
of polar SRT with thickness in Co /Au films has been inves-
tigated in Ref. 13 where the authors answered the question
whether the out-of-plane remanence decrease is due to a
breakup into domains or rather due to a rotation of magneti-
zation from the out-of-plane toward the in-plane orientation.
Monitoring the magnetization direction in a domain allowed
the authors of Ref. 13 to unequivocally conclude that the
magnetization crossover took place by a continuous rotation.
This experimental result has never been argued.24 However,
a more recent experimental work16 provides some evidence
of phase coexistence that is characteristic of a discontinuous
first-order SRT. At the same time, in Ref. 17, the same au-
thors demonstrate that in the vicinity of the SRT with film
thickness the magnetic susceptibility exhibits an asymmetri-
cal peak that is characteristic of a continuous second-order
SRT.25 Therefore, the analysis of the available experimental
data allows us to conclude that the results reporting on the
continuous SRT m�→m� with Co film thickness appear to be
more convincing.

So far, a common approach to the description of the con-
tinuous SRT m�→m� within model �1� was to include the
quadratic contribution to the anisotropy energy KB2 sin4 �
into Eq. �1�.6 This term determines the width of the SRT
m�→m�. Similar to KB and KS, the anisotropy constant KB2
is to be determined from the comparison of experiment and
theory. Over the past decade, a considerable effort has been
spent trying to find grounds for the presence of the effective
high-order anisotropies like KB2 sin4 � in the expression for
the anisotropy energy �Eq. �1�� �read, for example, items 1–3
on pp. 156 and 157 and Sec. IV in the recent comprehensive
review in Ref. 6 and references therein�. A variety of mecha-
nisms able to give rise to the effective high-order anisotro-
pies, which have no counterpart in the underlying Hamil-
tonian, have been proposed. In particular, it has been
suggested that the roughness and nonuniformity of a film can
lead to the appearance of high-order anisotropies. In the

present work, we demonstrate that when the exchange inter-
action between atomic layers is finite, the continuous SRT
m�→m� with film thickness can be described without in-
volving high-order anisotropies. This finding is in agreement
with the results of previous theoretical works.26,27 We do not
claim that the higher order anisotropies are absent in Co /Au
films or in other multilayer systems. We just demonstrate that
the description of SRT with film thickness in the case of
Co /Au films does not require higher order anisotropies. Be-
cause of that, we follow the well-known and commonly ac-
cepted rule that the phenomenological description of a physi-
cal phenomenon should be performed with the minimal
possible number of adjustable parameters. Hence, in our de-
scription of SRT in Co /Au films, we take into account only
the anisotropy constants of the lowest order.

Due to the infinite magnitude of the exchange interaction
assumed in model �1�, the magnetization vector of all layers
are parallel to each other; thus, all of them are characterized
by a single orientation angle �. Such an approach is well
justified when one wants to describe the magnetic properties
of Fe and Ni films as in these metals the domain wall width
is equal to 138 and 238 lattice parameters, respectively,28 that
is, much larger than the film thickness �approximately ten
atomic layers�. In this limit, during the SRT the film behaves
as one entity, as a giant magnetic molecule; therefore, the
single-domain picture is quite adequate. In contrast, in Co
the domain wall width is only about 30 lattice parameters,28

that is, comparable with the film thickness. Besides, in Co
films the shape anisotropy and bulk anisotropy act in the
same direction, both prompting the magnetization vector to
orient in plane. It means that in a thin Co film, the domain
wall width must be even smaller than in bulk Co samples.
Because of these reasons, the continuous SRT m�→m� in a
Co film has to go via an intermediate canted noncollinear
state, m�, rather than via the canted collinear state. This
statement is proven in Sec. II of the present paper where we
show that a canted noncollinear state is more energetically
favorable than the in-plane, perpendicular, and canted collin-
ear states. Therefore, we conclude that even with account of
the term KB2 sin4 �, the model �1� cannot adequately describe
the magnetic properties of Co films. The canted noncollinear
state is a part of the domain wall with a layer-dependent
orientation angle. The possibility for such a ground-state
noncollinear spin configuration to exist in a semi-infinite fer-
romagnetic sample was first noted in Ref. 29 and in thin
films in Ref. 30.

To describe the canted noncollinear state, one should use
the model expression for thermodynamic potential, taking
into account the finite magnitude of the exchange interaction
between atomic layers,

� = − JSBMSMB cos��1 − �2� − JBBMB
2 �

n=2

N−1

cos��n − �n+1�

+ KSMS
2 sin2 �1 + KBMB

2�
n=2

N

sin2 �n. �2�

Applying model �1� for the restoration of the anisotropy con-
stants KS and KB from the comparison of theory and experi-
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ment, one makes the assumption that these constants are
small �compared to the infinite magnitude of the exchange
interaction�. Obviously, it is not entirely correct to make such
an assumption about KS and KB, whose values are yet to be
determined. In model �2�, terms describing the exchange in-
teraction between atomic layers �JSB and JBB� are taken into
account explicitly; i.e., no initial assumptions are made about
the magnitude of anisotropy constants KS and KB. Generally,
in magnetic materials, such as Fe and Ni, the anisotropy
energy is much smaller than the energy of the exchange in-
teraction. However, as it has been mentioned in Ref. 6 �p.
194�, it does not mean that the case where the anisotropy
energy is comparable with the energy of the exchange inter-
action is a mere physical abstraction. For example, in
multilayer films with alternating magnetic and nonmagnetic
layers, the exchange interaction between neighbor magnetic
layers can be substantially diminished, increasing the thick-
ness of nonmagnetic layers, and it can become comparable
with the anisotropy energy. Therefore, a proper investigation
of model �2� could be useful not only for the description of
the SRT m�→m� with thickness observed in Co films, but
also for a much wider class of magnetic systems demonstrat-
ing the collinear-to-noncollinear SRT.6

Model �2� is the simplest model that is able to describe a
canted noncollinear state, but even for this simple model
there exist no analytic results. Moreover, some authors state
that in the discrete model �Eq. �2��, no analytic results can be
obtained.33 The lack of analytical results strongly compli-
cates the procedure of getting information about the aniso-
tropy energy of thin films, multilayers, and sandwiches by
comparing theory and experiment. In particular, there is no
analytic expression for the stability criterion of the perpen-
dicular and in-plane states for a film of arbitrary thickness N.
The canted noncollinear state has been shown to be favorable
only for the uniform exchange interaction across the film.26,27

There exist no diagram of magnetic states in the coordinates
�KS ,KB� for films of arbitrary N. The absence of analytic
results for model �2� is, however, easy to understand. Despite
the simplicity of the physical mechanism driving continuous
SRT m�→m�, its description comes across difficulties re-
lated to the analyses of the function �Eq. �2��, which depends
on many variables, namely, orientation angles �1 ,�2 , . . . ,�N.
Because of that, the search for the minima of the thermody-
namic potential �Eq. �2�� is usually performed within various
approximations. For instance, within the continuum ap-
proach, the discrete atomic structure of the film is
ignored.29,31–34 Instead of a discrete layer index, the continu-
ous coordinate x is introduced and the magnetization profile
is described by the continuous function ��x�. The continuum
approach is applicable only in the case of small anisotropy
constants for it is based on the assumption that the change in
the orientation of magnetization vector with a layer index is
very small. In order to justify the application of the con-
tinuum approach for the description of the magnetic proper-
ties of thin films �five to ten atomic layers�, the authors of
Refs. 32–34 solved the discrete model �Eq. �2��
numerically33 and compared the results to those obtained in
the continuum approach. However, the numerical solution of
model �2� for some particular values of model parameters
cannot reveal the whole physical picture model �2� can pro-

vide. Hence, it cannot serve as an exhaustive proof that the
continuum approach is applicable for the description of the
magnetic properties of ultrathin films. Moreover, in our pre-
vious work,35 we have shown that the application of the con-
tinuum approach leads to a wrong phase diagram even for a
semi-infinite ferromagnetic film. On the other hand, in the
papers where the discrete layer structure of the film has been
taken into account, the results have been obtained either nu-
merically or within the perturbation theory. In the latter case,
the deviation of orientation angles from the orientation angle
averaged across the film is believed to be small, and it serves
as the so-called small parameter.6,36 However, in the case of
a large difference between the surface and bulk anisotropy
constants �KS�� �KB�, which is actually often the case, and
when the difference between the exchange interaction in the
surface region and in bulk is large JSB�JBB, which is also
probable, the deviation of surface magnetization from the
average magnetization can appear to be large. Therefore,
such an approach cannot provide us with the total physical
picture. We notice that the applications of discrete and con-
tinuum methods one can find in literature have much in com-
mon as within both approaches investigators mainly aimed at
finding the magnetization profile of a film. This is not sur-
prising for in the absence of the true diagram of magnetic
states, only the magnetization profile can give an information
about the magnetic state of the film.

References 26 and 27 stand out in the field of the theoret-
ical description of a continuous SRT m�→m� with film
thickness. The authors of these papers use the discrete ap-
proach and solve a model similar to model �2�. They have
obtained theoretical results similar to those reported in the
present work: �A� The SRT m�→m� with film thickness is
realized via an intermediate canted noncollinear state m�.
�B� The SRT m�→m� with film thickness can be described
without taking into account the high order anisotropies in the
expansion of anisotropy energy.

Since the used approaches and the results obtained in
Refs. 26 and 27 are very close to those achieved in the
present work, it is worth comparing the methods applied in
both cases in more detail. In Ref. 26, the diagrams of mag-
netic states m�, m�, and m� in coordinates �1, �2 for N
=2,3 ,4 ,5 were constructed for a Co film described within a
model similar to model �2�. �1 and �2 are anisotropy con-
stants of two surfaces of the film. We note that in Ref. 26, the
analytic results �the equations determining lines that confine
the regions corresponding to m�, m�, and m� states� were
presented only for the case of a bilayer N=2. The authors of
Ref. 26 promised to present the derivation of the criterion of
stability of the in-plane and perpendicular states in the fu-
ture. However, even for the case of a bilayer, this derivation
has never been published.37 We note that in Ref. 26 all the
results were obtained in the assumption that the exchange
interaction between atomic layers is not dependent on the
layer index. At the same time, in the surface region, the
exchange interaction and the magnetic moment are most
likely different from those in the layers far from the inter-
face. Moreover, in Ref. 26, all bulk anisotropy constants
were set to zero. To justify this approximation, the authors
cited Refs. 38 and 39, where surface and bulk anisotropy
constants of Fe /Cu and Fe /Au films had been obtained in
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first-principles calculations. However, the authors of Ref. 26
applied their theory exceptionally for the description of the
SRT in Co /Au film; hence, citing Refs. 38 and 39 is irrel-
evant. In the later work by the same authors,27 the theory was
generalized for the case of finite temperature. Despite the
statement made in the concluding part of this paper, that they
“derived explicit expressions for the boundaries of the re-
gions related to normal-to-plane, canted, and in-plane ground
states in the corresponding parameter space” one cannot find
any explicit expressions for N�2 in their paper.27 Fortu-
nately, the approximations used by the authors of Refs. 26
and 27 did not prevent them from getting the right physical
conclusions �A� and �B� �read above�. However, the absence
of formulas for the stability criterion of the in-plane and
perpendicular states for an arbitrary N makes it impossible to
get information about the energy of magnetic anisotropy by
comparing theory and experimental results. The main goal of
the present work is to fill this gap in the theory of thin-film
magnetism. In particular, here, we present the analytic ex-
pressions for the criterion of stability of the in-plane and
perpendicular states and construct the diagram of the mag-
netic states of a finite magnetic film in coordinates KS, KB.

It is convenient to work with the reduced expression for
the model thermodynamic potential,

� =
�

JBBMB
2 = − 	 cos��1 − �2� − �

n=2

N−1

cos��n − �n+1�

+
	kS

2
sin2 �1 +

kB

2 �
n=2

N

sin2 �n. �3�

The reduced surface anisotropy constant kS related to the
Co-Au interface, the bulk anisotropy constant of all other
atomic layers in the Co film, kB, and the parameter 	, char-
acterizing the nonuniformity of the exchange interaction in
the vicinity of the Co-Au interface, are given by the follow-
ing formulas:

kS =
2KSMS

2

JSBMSMB
, kB =

2KBMB
2

JBBMB
2 , 	 =

JSBMSMB

JBBMB
2 . �4�

The main goals of the present work are the following.
�I� To prove that within model �3� a canted noncollinear

state is most favorable compared to perpendicular, in-plane,
and canted collinear states in the case of an arbitrary nonuni-
formity of the ferromagnetic exchange interaction across the
film of a finite thickness N. A canted noncollinear state oc-
curs when neither perpendicular nor in-plane states are
stable.

�II� To derive the analytic expression for the criterion of
stability of the perpendicular �m�� and in-plane �m�� mag-
netic states of a ferromagnetic film of finite N, described by
model �3�, taking into account the discrete layer structure of
the film as well as the nonuniform exchange interaction
across the film. We also analyze these expressions in the
limiting case of small anisotropy constants.

�III� To construct the diagram of the magnetic states of a
thin film in coordinates �	 ,kS ,kB� for chosen N. To compare
this diagram with the diagram of the magnetic states of a

semi-infinite ferromagnetic sample obtained in our previous
work.35,43 To investigate the dependence of the diagram on
the parameter 	, characterizing the nonuniform exchange in-
teraction in the surface region of the film.

�IV� To construct the diagram of the magnetic states in
coordinates �kS ,kB� for a chosen parameter 	 and various N.
To describe the SRT m�→m� with film thickness N via the
intermediate canted noncollinear state m�.

In the present work we solve model �2� and demonstrate
its applicability for the description of the SRT m�→m� in
Co /Au films. Because of that, we have to note that in accor-
dance with experimental data, the as-grown Co ultrathin
films consist of domains with the opposite orientations of
magnetization that is perpendicular to the film plane. In the
vicinity of the SRT, the size of domains decreases with
thickness.13–18 The multidomain magnetic state of the films
as well as the decrease of the domain size with film thickness
was investigated in detail in theoretical works.40–45 In par-
ticular, it has been shown that the energy difference between
the multidomain state and the single-domain state is very
small, and these states are separated from each other by an
energy barrier. Within model �3� used in the present work,
we restrict ourselves by considering the magnetic states of
the film to be uniform in the plane of the film and taking into
account the nonuniform state only across the film, i.e., canted
noncollinear state. This approach is quite justified as it has
been shown experimentally that Co films can be transformed
into a single-domain state by magnetic field.14,15 In particu-
lar, in Ref. 15 it has been demonstrated that on magnetizing
Co films in an external field, the magnetic microstructure can
be transformed into a metastable single-domain state with
the perpendicular magnetization. The transition into the in-
plane magnetization state is shifted to even higher thick-
nesses, and a continuous rotation of the magnetization from
the vertical to the in-plane orientation was observed. This
single-domain configuration with the perpendicular magneti-
zation could not be changed by further demagnetization pro-
cedures. Heating the sample reestablished qualitatively the
same domain structure as before when applying the field.
Therefore, the investigation of the SRT m�→m� with film
thickness within model �3�, in fact, means the investigation
of the SRT between metastable single-domain states m� and
m� obtained on magnetizing Co film in external field.

The angle dependence of the shape anisotropy inside each
atomic layer is the same as the angle dependence of magne-
tocrystalline anisotropy. Therefore, we assume that the con-
tribution of the shape anisotropy is already included in terms
describing the anisotropy energy in model �2�. The contribu-
tion of the shape anisotropy to the exchange interaction be-
tween neighbor layers is relatively small. Therefore, we as-
sume that it is already accounted for in model �2� by small
renormalization of exchange interactions between atomic
layers. The magnitude and properties of the shape anisotropy
for uniform films with various crystal structures and orienta-
tions are well known. The matrix elements of the magneto-
dipole interaction �pq are presented in Ref. 36. For the sake
of compactness of formulas, the contribution of the shape
anisotropy is not written explicitly in model �2�. The math-
ematical method used in the present work is based on the
analysis of the sign of the quadratic form, resulting from the
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expansion of thermodynamic potential to the second order of
every orientation angle. In turn, this analysis is based on the
analysis of a square three-diagonal matrix that describes this
quadratic form. Since matrix �pq which describes magneto-
dipole interaction, is also square and three diagonal, the
analysis of the ground state of a film described by model �2�
presented here can be repeated, explicitly taking into account
the shape anisotropy. That is why the absence of the account
of the magnetodipole interaction in an explicit form in model
�2� simplifies the formulas rather than the physical picture.

In the present work, we do not consider the microscopic
origin of the interface and bulk anisotropy. Neither do we
discuss the applicability of the Heisenberg model for the
treatment of magnetic properties of the Co film that is a
transition metal with itinerant d electrons. These problems
have been discussed in detail in the recent review6 �Appen-
dix A, Sec. A 1, and Sec. A 3�, and we share the viewpoint of
the authors of Ref. 6.

The present paper is organized in the following way. In
Sec. II, the energy of the canted noncollinear state is com-
pared with the energy of the perpendicular and in-plane
states. In Sec. III, we demonstrate that in the parameter space
�	 ,kS ,kB�, there is a region where the perpendicular state and
the in-plane state are unstable. In Sec. IV, the evolution of
borders in the �kS ,kB� diagram between regions correspond-
ing to different magnetic states of a film on film thickness is
investigated. Also, in Sec. IV, the description of the SRT
m�→m� observed in a bare Co /Au film with film thickness
is presented. In Sec. V, we consider the theory presented in
the limiting case of a very small bulk anisotropy constant. In
Sec. VI, an analytic solution of the problem of a bilayer with
competing anisotropies at both sides of a film is presented.
The derivation of the stability criterion of the perpendicular
state of a film is presented in Appendix A. The derivation of
the criterion of stability of the in-plane state of a film is
presented in Appendix B.

II. COMPARISON OF THE ENERGIES OF
CANTED NONCOLLINEAR, IN-PLANE,

AND PERPENDICULAR STATES

In the present work, the continuous SRT m�→m� with
film thickness is treated as a transition via an intermediate
canted noncollinear state m�. Because of that, it is important
to prove that this state is energetically favorable compared to
both the in-plane and perpendicular states. This task has been
considered in Ref. 27 for the particular case of the uniform
exchange interaction across the film. In the present work, the
difference between the exchange interaction in the surface
region and in bulk layers is taken into account. Therefore, we
compare the energies of m�, m�, and m� states in the general
case:	�1. As a matter of fact, we go slightly further and
generalize model �3� for the case of an arbitrary nonuniform
exchange interaction across the film. In other words, the re-
duced exchange interaction between nth and �n+1�th layers
	n,n+1�	n�0 is supposed to be layer dependent across the
entire film rather than only in the surface region. The aniso-
tropy constant of each atomic layer, kn, can have any sign,
and it is assumed to be also a layer-dependent parameter.
Then, model �3� can be rewritten as

� = − �
n=1

N−1

	n cos��n − �n+1� +
1

2�
n=1

N

kn sin2 �n. �5�

The minimization of the thermodynamic potential �Eq. �5��
with respect to each orientation angle �n gives a set of N
equations,

	1 sin��1 − �2� + k1 sin �1 cos �1 = 0,

− 	1 sin��1 − �2� + 	2 sin��2 − �3� + k2 sin �2 cos �2 = 0,

. . .

− 	n−1 sin��n−1 − �n� + 	n sin��n − �n+1� + kn sin �n cos �n = 0,

. . .

− 	N−2 sin��N−2 − �N−1� + 	N−1 sin��N−1 − �N�

+ kN−1 sin �N−1 cos �N−1 = 0,

− 	N−1 sin��N−1 − �N� + kN sin �N cos �N = 0. �6�

Formally, the orientation angles �n can have any values.
However, following the set of Eq. �6�, if the set of orientation
angles 	�n
 corresponding to a canted noncollinear state sat-
isfies this system of equations, then the following sets of
orientation angles 	−�n
, 	
−�n
, and 	�n+

 satisfy this
system of equations as well. All these solutions correspond
to the same energy. This symmetry of nontrivial solutions
allows one to restrict the search for nontrivial solutions to the
interval �n� �0,
 /2�. In accordance with this choice, we
believe that the parallel and perpendicular states of a film
correspond to solutions 	�n=0
 and 	�n=
 /2
 rather than to
solutions 	�n=

 and 	�n=−
 /2
, for example. By the same
reason, we believe that �n=0 and �n=
 /2 are boundary val-
ues for the considered interval �n� �0,
 /2�. Also, we have
to mention that 	�n=0
 and 	�n=
 /2
 satisfy the set of Eq.
�6� for any magnitudes of model parameters.

Instead of solving these equations with respect to orienta-
tion angles �n, we fix the configuration corresponding to the
canted noncollinear state �1 ,�2 ,… ,�N and express the re-
duced anisotropy constants kn from the corresponding equa-
tions in Eq. �6�. The substitution of kn in Eq. �5� by the
corresponding expression leads to the following expression
for the thermodynamic potential of a canted noncollinear
state m�,

�� = −
1

2 �
n=1

N−1

	n� cos �n+1

cos �n
+

cos �n

cos �n+1
� . �7�

The expressions for the thermodynamic potential of the in-
plane state m���1=0 ,�2=0 ,… ,�N=0� and the perpendicular
state m���1=
 /2,�2=
 /2,… ,�N=
 /2� follow from Eq.
�5� and are given by formulas

�� = − �
n=1

N−1

	n, �8�
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�� = − �
n=1

N−1

	n +
1

2�
n=1

N

kn. �9�

After some algebra, the expressions for differences �� −��

and ��−�� can be written in the following form:

�� − �� =
1

2 �
n=1

N−1

	n� cos �n+1

cos �n
− 2 +

cos �n

cos �n+1
� � 0, �10�

�� − �� =
1

2 �
n=1

N−1

	n� sin �n+1

sin �n
− 2 +

sin �n

sin �n+1
� � 0. �11�

It follows from Eqs. �10� and �11� that since 	n�0 the
canted noncollinear state is always favorable compared to
both the in-plane state and the perpendicular state. In the
vicinity of the SRT m�→m�, all orientation angles �n ap-
proach zero and the ratio of cosines approaches 1. As a con-
sequence, inequality �10� transforms into equality. Similar to
this, in the vicinity of SRT m�→m� all orientation angles �n
approach 
 /2 and the ratio of sinuses approaches 1; thus,
inequality �11� transforms into equality. The canted noncol-
linear state is realized when the in-plane state and the per-
pendicular state are no longer stable. In the next sections, it
will be demonstrated that in the parameter space �	 ,kS ,kB�,
there is a region where neither the in-plane nor the perpen-
dicular state is stable. In Sec. VI, for the particular case of
the bilayer it will be demonstrated that the canted noncol-
linear state cannot realize in the regions where the perpen-
dicular and in-plane states are stable.

As for the canted collinear state, we can note that, first, in
the N-dimensional space the point corresponding to the
canted collinear state �1=�2=�3=¯=�N�� ,0���
 /2
does not satisfy the set of Eq. �6�. It means that this point
does not satisfy the necessary condition for the extremum of
the thermodynamic potential �Eq. �5��. Second, in the
N-dimensional space, the point �� ,� , . . . ,�� is an inner point
in the region 0��n�
 /2,n=1,2 , . . . ,N; i.e., it does not be-
long to the border of this region. Therefore, the canted col-
linear state cannot correspond to a minimum of the thermo-
dynamic potential �Eq. �5��. Based on the performed
analysis, we conclude that the continuous SRT m�→m� with
film thickness goes via an intermediate canted noncollinear
state.

III. DIAGRAM OF THE MAGNETIC STATES
OF A FILM OF FINITE THICKNESS

IN COORDINATES „� ,kS ,kB…

In this section, we demonstrate that for a film of finite
thickness there is a region in the three-dimensional space
�	 ,kS ,kB� where neither the perpendicular state nor the in-
plane state is stable. In accordance with the results of the
previous section, it means that this region corresponds to the
canted noncollinear state. Also, we discuss the qualitative
difference between the diagrams of the magnetic states of a
finite film and a semi-infinite sample.

The diagrams of the magnetic states of a bilayer �N=2�
and a trilayer �N=3� in coordinates �	 ,kS ,kB� are presented

in Figs. 1 and 2. These diagrams are constructed based on the
analytic expressions for the stability criteria of the perpen-
dicular and in-plane states obtained for arbitrary N �see Ap-
pendixes A and B�. The diagram for a semi-infinite ferro-
magnetic sample in coordinates �	 ,kS ,kB� is presented in
Fig. 3. This diagram is constructed using the stability criteria
obtained in our previous works.35,46 These criteria are special
cases of the general criteria obtained in the present work.
They follow from formulas �A22�, �A26�, �B3�, and �B5� in
the limiting case N→�. The stability criteria for semi-
infinite ferromagnetic samples have already been used for
the description of a continuous SRT m�→m� with
temperature,47 discovered in ultrathin Fe films deposited on a
thick Gd�0001� film.48,49 These criteria have also been used
in the study of the layer-dependent magnetic susceptibility in
the surface region of a nonuniform semi-infinite
ferromagnetic.45

The diagrams of magnetic states for N=2 �Fig. 1� and N
=3 �Fig. 3� have two asymptotes, two planes: kS=−1 for the
red surface and kS= +1 for the blue surface. To avoid the
overloading of Figs. 2 and 3, we do not show the plane
asymptotes in these figures. In these diagrams, the region
corresponding to the perpendicular state exists only for kS
�1, and it is situated below the red surface; the region cor-

FIG. 1. �Color online� Diagram of magnetic states of a bilayer
N=2. The perpendicular state exists only for kS�1. The region
corresponding to the perpendicular state is situated below the red
surface. The plane asymptote kS=1 for the red surface is not shown.
The in-plane state exists only for kS�−1. The region corresponding
to the in-plane state lies above the blue surface. The plane asymp-
tote kS=−1 for the blue surface is not shown. The region corre-
sponding to the canted noncollinear state is situated above the red
surface and below the blue surface for −1�kS� +1, above the red
surface for kS�−1, and below the blue surface for kS� +1. The
horizontal plane kB=0 serves to guide the eye.
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responding to the in-plane state exists only for kS�−1, and it
is situated above the blue surface �Figs. 1 and 2�. Therefore,
the perpendicular and in-plane regions do not occupy the
entire space of the diagram, but in a certain region neither the
perpendicular nor the in-plane state is stable. This region is
above the red surface and below the blue surface for −1
�kS� +1, above the red surface for kS�−1, and below the
blue surface for kS� +1.

The diagram of magnetic states of a semi-infinite ferro-
magnetic sample �N→�� has two asymptotes, two planes:
kS=−1 for the red surface and kS= +1 for the blue surface
�Fig. 3�. To avoid the overloading of Fig. 3, we do not show
the plane asymptotes in these figures. The region where the
perpendicular state occurs exists only for kS�1, and it is
situated below the red plane kB=0 in the left part of the
diagram, kS�0, and below the red surface in the right part of
the diagram for 0�kS�1. The region corresponding to the
in-plane state exists only for kS�−1, and it lies above the
blue plane kB=0 in the right part of the diagram kS�0 and
above the blue surface in the left part of the diagram for
−1�kS�0. Therefore, similar to the diagram of magnetic
states of a finite film, the perpendicular and in-plane regions
do not occupy the entire space, but we find a region corre-

sponding to the canted noncollinear state positioned above
the red surface and below the blue surface for −1�kS� +1,
above the red plane kB=0 for kS�−1, and below the blue
plane kB=0 for kS� +1.

The comparison of the diagram of the magnetic states of a
finite film �Figs. 1 and 2� with that for a semi-infinite sample
�Fig. 3� shows that in the former case in the left part of the
diagram, kS�0, the region corresponding to the perpendicu-
lar state spreads above the plane kB=0 and it is bounded
from above by the red surface. It means that in finite films,
the perpendicular state can exist for kS�0,kB�0, whereas
this is impossible in the semi-infinite case. Similarly, in the
right part of the diagram, kS�0, the region corresponding to
the in-plane state of the finite film spreads below the plane
kB=0, and it is bounded from below by the blue surface. It
means that in the films of finite thickness, the in-plane state
can exist for kS�0,kB�0, whereas this is impossible for a
semi-infinite sample. These differences make the diagram for
a finite film distinct from that for a semi-infinite sample.

The physical meaning of this result is obvious. In the
region �kS�0,kB�0�, the surface anisotropy energy and the
bulk anisotropy energy favor the perpendicular and in-plane
orientations of magnetization, respectively. In other words,

FIG. 2. �Color online� Diagram of magnetic states of a three-
layer film N=3. The perpendicular state exists only for kS�1. The
region corresponding to the perpendicular state is situated below the
red surface. The plane asymptote kS=1 for the red surface is not
shown. The in-plane state exists only for kS�−1. The region cor-
responding to the in-plane state lies above the blue surface. The
plane asymptote kS=−1 for the blue surface is not shown. The re-
gion corresponding to the canted noncollinear state is situated
above the red surface and below the blue surface for −1�kS� +1,
above the red surface for kS�−1, and below the blue surface for
kS� +1. The horizontal plane kB=0 serves to guide the eye.

FIG. 3. �Color online� Diagram of magnetic states of a semi-
infinite film N→�. The perpendicular state exists only for kS

� +1. The region corresponding to the perpendicular state is posi-
tioned below the red surface. The plane asymptote kS=1 for the red
surface is not shown. The in-plane state exists only for kS�−1. The
region corresponding to the in-plane state is positioned above the
blue surface. The plane asymptote kS=−1 for the blue surface is not
shown. The region corresponding to the canted noncollinear state
lies above the red surface and below the blue surface for −1�kS

� +1, above the red surface �plane kB=0� for kS�−1, and below
the red surface �plane kB=0� for kS� +1.
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there is a competition between the surface and bulk aniso-
tropy energies. If the number of atomic layers is infinite, then
the finite surface anisotropy energy cannot compete with the
infinite bulk anisotropy energy. Therefore, in the left part of
the diagram �kS�0� for a semi-infinite sample, the region
corresponding to the perpendicular state is bounded from
above by the plane kB=0. In a finite film, a large enough
absolute value of the surface anisotropy energy �kS�0� can
overcome the finite magnitude of the bulk anisotropy energy;
thus, the perpendicular state can take place. The region po-
sitioned in the left part of the diagrams in Figs. 1 and 2
above the plane kB=0 and below the red surface shrinks with
increasing N. One can see this from the comparison of the
diagrams for N=2 �Fig. 1� and N=3 �Fig. 2�. In the limiting
case N→�, this region totally disappears �Fig. 3�. Hence, for
a semi-infinite sample with kS�0, the perpendicular state
can take place only if kB�0. Thus, in the case kS�0,kB
�0, the realization of the perpendicular state in a film is
entirely determined by its finite thickness. Similar arguments
explain the realization of the in-plane state in the right part,
kS�0, of the diagram �Figs. 1 and 2�, i.e., above the blue
surface and below the horizontal plane kB=0.

It follows from Figs. 1 and 2 that the borders between the
regions corresponding to different states shift as the param-
eter 	�0 varies. We note, however, that the changes occur-
ring with varying 	�0 should be considered with care. As it
follows from formulas �4� that the reduced surface and bulk
anisotropy constants, kS and kB, are obtained by dividing the
corresponding anisotropy energies by the surface and bulk
exchange energy, respectively. This has been done, first, be-
cause such a definition of the reduced surface anisotropy
constant to some extent simplifies the formal mathematical
procedure of the derivation of stability criteria. Second, we
have already used this definition in our previous
works.35,43–45 However, the consequence of such a definition
of kS is that the parameter 	 becomes a factor in the surface
anisotropy energy; i.e., in the third term in Eq. �3�, we have
	kS /2. Hence, the formal variation of the parameter 	 in
model �3� means the simultaneous variation of the effective

surface anisotropy constant k̃S�	kS. This definition of the
reduced surface anisotropy constant might not be the best. It
is possible to introduce this constant with the same definition

as that of the bulk anisotropy constant, i.e., k̃S
�2KSMS

2 /JBBMB
2 =	kS. Moreover, the definition of kS can

also depend on specific requirements arising when one needs
to compare theoretical results to a concrete set of experimen-
tal data. We stress, however, that all the conclusions obtained
in the present work remain the same regardless of the choice

of the model parameters: �	 , k̃S ,kB� or �	 ,kS ,kB�. In order to
switch from the parameters �	 ,kS ,kB� used here to model

parameters �	 , k̃S ,kB� one should substitute kS with k̃S /	 in
each formula. The diagrams of magnetic states in the coor-

dinates �	 , k̃S ,kB� and �	 ,kS ,kB� look similar. The differences
between these diagrams are only those naturally following
from the redefinition of the surface anisotropy constant kS

→ k̃S /	. Thus, in the coordinates �	 ,kS ,kB� the in-plane state
exists only for kS�−1, whereas in the new coordinates

�	 , k̃S ,kB� it exists only for k̃S�−	. Similarly, in the coordi-

nates �	 ,kS ,kB� the perpendicular state exists only for kS�

+1, whereas in new coordinates it exists only for k̃S� +	,
etc.

For N=2, the criterion of the perpendicular state in new

coordinates can be written as kB�	k̃S / �k̃S−	�. In the limit-

ing case 	→ +�, it transforms into kB�−k̃S. For N=2, the
criterion of the in-plane state in the new coordinates can be

written as kB�−	k̃S / �k̃S+	�. In the limiting case 	→ +�, it

transforms into kB�−k̃S. Therefore, in the case of N=2 and
of an infinite exchange interaction between two atomic lay-
ers, 	→ +�, there is a direct competition between surface
and bulk anisotropy energies discussed above. In fact, for
N=2 in the limiting case of 	→ +�, when two atomic layers
appear to be strongly coupled, we come back to model �1�,
which does not allow for the canted noncollinear state.

For N=3, the stability criterion of the perpendicular state

�Eq. �A11�� can be written in terms of k̃S and kB as

k̃S �
	kB�kB − 2�

kB
2 − �	 + 2�kB + 	

.

In the limiting case of 	→ +�, it transforms into

k̃S �
kB�kB − 2�

1 − kB
.

Adding kB to both sides of this inequality, we have

k̃Sef f � k̃S + kB �
kB

kB − 1
.

As expected, the last formula exactly coincides with the cri-
terion of the stability of the perpendicular state for N=2 for
	=1 �Eq. �A7��, with the effective surface anisotropy con-

stant k̃Sef f � k̃S+kB. Obviously, in the limiting case 	→ +�,
the three-layer film is equivalent to a bilayer with an effec-
tive surface layer consisting of strongly coupled surface and
subsurface layers of the real three-layer film.

IV. EVOLUTION OF THE DIAGRAM OF MAGNETIC
STATES WITH FILM THICKNESS

To study the evolution of borders between the different
regions in the diagram with film thickness N, it is convenient
to fix the parameter 	�0. Actually, we do not know the
exact magnitude of this parameter for the Co /Au films; thus,
for certainty, we put 	=1. The diagrams of magnetic states
for N=2, 3, and 4 are presented in Fig. 4, together with the
diagram for N→�.

In Fig. 4, the region corresponding to the in-plane state is
situated above the solid line of the color chosen for each N,
and the existence region of the perpendicular state lies below
the dashed line of the same color. The canted noncollinear
state exists in the region between solid and dashed lines of
the corresponding color. In the left part of the diagram, kS
�0, the in-plane-canted noncollinear border has the vertical
asymptote kS=−1. In the right part of this diagram, kS�0,
the perpendicular-canted noncollinear border has the vertical
asymptote kS= +1. The same asymptotes can be seen in the
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diagram for a semi-infinite film �Fig. 4�. These asymptotes
appear as a result of the layer by layer approach used here. In
contrast, in Refs. 31–34, where the continuum approach has
been employed, the corresponding diagram has no vertical
asymptotes because in this approach the anisotropy energy is
assumed to be much smaller than the energy of the exchange
interaction between atomic layers. Therefore, the continuum
approach allows one to construct only a part of the diagram
close to the coordinate origin. However, even in the vicinity
of the coordinate origin, the usage of the continuum ap-
proach can lead to wrong results. Indeed, if the exchange
interaction between the surface and subsurface atomic layers
is much smaller than the exchange interaction between the
bulk layers �	�1�, then even a rather small �as compared to
the exchange interaction in bulk� effective surface anisotropy

energy �	� k̃S�1� can cause the deviation of the surface
magnetization from the in-plane orientation. In order to illus-
trate this, one should consider the diagram of the magnetic

states in the �k̃S ,kB� coordinates. This diagram is similar to
the �kS ,kB� diagram presented in Fig. 4. The only difference

is that in the �k̃S ,kB� diagram the vertical asymptotes are

determined as k̃S= ±	; i.e., in the case �	�1�, they are very
close to the coordinate origin. It means that in the case �	
�1�, a point �k̃S ,kB� even with a small effective surface an-

isotropy constant �	� k̃S�1� can be situated in the region

corresponding to the canted noncollinear state.
The left part of the diagram, kS�0 �Fig. 4� demonstrates

that as N increases, the dashed line representing the border
between the perpendicular and canted noncollinear states
shifts downward. In the limiting case N→�, it coincides
with the horizontal line kB=0, which is the perpendicular-
canted noncollinear border in the diagram for the semi-
infinite case. With increasing N, the solid line, representing
the border between the in-plane and canted noncollinear
states, also moves downward in the left part of the diagram.
In the limiting case N→�, it coincides with the solid black
line that is the border between the in-plane and canted non-
collinear regions in the diagram for semi-infinite films. In the
right part of the diagram, kS�0, the in-plane-canted noncol-
linear border �solid line� moves upward as N becomes larger.
In the limiting case N→�, it coincides with the horizontal
line kB=0, which is the in-plane-canted noncollinear border
in the diagram for a semi-infinite film. In the right part of the
diagram, kS�0, the dashed line that is the perpendicular-
canted noncollinear border also moves upward as N becomes
larger. In the limiting case N→�, it coincides with the
dashed black line that is the perpendicular-canted noncol-
linear border for the semi-infinite case.

Knowledge about the evolution of borders separating the
stability regions for different magnetic states with film thick-
ness allows one to qualitatively describe the SRT1 m�

→m� and the SRT2 m�→m� taking place in Co /Au films
with increasing film thickness. Let us take a closer look at
the left upper quadrant of the diagram, which is shown in
Fig. 5 on a larger scale. In this part of the diagram, the
surface anisotropy energy favors the perpendicular state,

FIG. 4. �Color online� Diagrams of magnetic states in coordi-
nates �kS ,kB� for N=2,3 ,4 , . . . ,�, 	=1. N=2, green; N=3, blue;
N=4, red;..; N=�, black. For each fixed film thickness N, the re-
gion corresponding to the in-plane state is situated above the solid
line, and the region corresponding to the perpendicular state is situ-
ated below the dashed line of the same color. The rest of the dia-
gram corresponds to the canted noncollinear state. In the left part of
the diagram, kS�0, in the limiting case N→�, the stability thresh-
old of the perpendicular state of the semi-infinite film corresponds
to the horizontal line kB=0, and the stability threshold of the in-
plane state of the semi-infinite film corresponds to the solid black
line. Correspondingly, in the right side of the diagram, kS�0, in the
limiting case N→�, the stability threshold of the in-plane state of
the semi-infinite film corresponds to the horizontal line kB=0, and
the stability threshold of the perpendicular state of the semi-infinite
film corresponds to the solid black line.

FIG. 5. �Color online� Diagram of magnetic states in coordi-
nates �kS ,kB�. The film thickness N=2,3 ,4 ,5 ,6 , . . . ,�. The param-
eter 	 is chosen to be 	=1. N=2, green; N=3, blue; N=4, red; N
=5, indigo; N=6, orange;..; N=�, black. For each N, the region
corresponding to the canted noncollinear state is situated between
the solid and dashed lines of the corresponding color. The stability
region of the perpendicular state is situated below the dashed line,
and the region corresponding to the in-plane state lies above the
solid line.
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whereas the bulk anisotropy energy favors the in-plane state.
Let us specify a point A with coordinates �kS

A ,kB
A�, which are

the reduced surface and bulk anisotropy constants of a bare
Co /Au film. For the sake of simplicity, we assume that these
coordinates do not depend on N; i.e., point A does not move
in the diagram as the film thickness changes. The position of
point A was chosen in such a way that for N=2 and N=3 the
film is in the perpendicular state �point A is below the green
and blue dashed lines in Fig. 5�. For N=4, point A is above
the dashed red line and below the solid red line; i.e., the film
is in the canted noncollinear state. Therefore, changing N
from 3 to 4, one should observe the SRT1 from the perpen-
dicular state to the canted noncollinear state m�→m�, that
is, in accordance with experiments reporting that NSRT1

3.5 AL.13 For N=5, the film is still in the canted noncol-
linear state because point A is above the dashed indigo line
and below the solid indigo line. Further increase in the film
thickness up to N=6 leads to the SRT2 from the canted non-
collinear state to the in-plane state, m�→m�, as for N=6
point A is already situated above the solid orange line. Again,
this agrees with experiment, which gives NSRT2
5.5 AL.13

Note that it is not just one point in the diagram but rather a
region, which corresponds to experimental results: NSRT1

3.5 AL and NSRT2
5.5 AL. In this region kS� �−0.24;
−0.1�, kB� �0.03;0.09�, and the ratio �kS /kB� is equal to
2.7±0.3.

V. SMALL REDUCED BULK ANISOTROPY CONSTANT
kB AS A LIMITING CASE

In the case of an arbitrary reduced bulk anisotropy con-
stant kB, the analytic expressions for the stability criteria of
the perpendicular state �Eqs. �A22� and �A26�� and the in-
plane state �Eqs. �B3� and �B5�� are too bulky. However,
there exist many magnetic layered systems with rather small
kB, such as Fe and Ni. Therefore, we find it useful to explic-
itly consider the limiting case of small kB as this would allow
one to substantially simplify the procedure of the evaluation
of anisotropy constants kS and kB from the comparison of
theory and experiment in the case �kB��1.

The comparison of the thermodynamic potentials of the
perpendicular and in-plane states, Eqs. �8� and �9�, gives

�� − �� =
1

2�
n=1

N

kn =
1

2
�	kS + �N − 1�kB�

�
�N − 1�

2
�kB +

	kS

N − 1
� . �12�

It follows from Eq. �12� that the parameter �N−1� plays a
role of the film thickness. In the �kS ,kB� diagram of the ther-
modynamic potentials for the perpendicular and in-plane
states are equal to each other on the straight line defined as

kS = −
N − 1

	
kB. �13�

In accordance with Eq. �12�, the in-plane state is favorable
for N� �kB−	kS� /kB and the perpendicular state is favorable
for N� �kB−	kS� /kB. So, it seems that the SRT m�→m� is

discontinuous. However, in the �kS ,kB� diagram, both the
perpendicular and in-plane states become unstable, not ex-
actly at line kB=−	kS /N−1 but in some vicinity of this line.

Let us illustrate this statement in the limiting case ��kB�
�1�. In accordance with the solution of model �3� presented
in Appendixes A and B, the perpendicular state is stable
when kS
kSC

� �kB ,N ,	� �Eqs. �A22� and �A26��, and the in-
plane state is stable if kS�kSC

� �kB ,N ,	� �Eqs. �B3� and �B5�.
The expansion of these expressions to the second order of kB
gives

m�: kS 
 kSC
� �kB,N,	� = −

�N − 1�
	

kB

−
�N − 1��2	N2 − �7	 − 6�N + 6�	 − 1��

6	2 kB
2 + ¯ ,

�14�

m�: kS � kSC
� �kB,N,	� = −

�N − 1�
	

kB

+
�N − 1��2	N2 − �7	 − 6�N + 6�	 − 1��

6	2 kB
2 + ¯ .

�15�

It follows from Eqs. �14� and �15� that in the linear approxi-
mation with respect to kB, the expressions for the stability
threshold of the perpendicular and in-plane states coincide
with each other. Consequently, the canted noncollinear state
cannot be realized. Therefore, we conclude that the fre-
quently used model �1� corresponds to the linear approxima-
tion with respect to kB in the solution of model �3�. However,
in the quadratic approximation with respect to kB, there is a
finite nonzero range of kS where the canted noncollinear state
can take place.

m�: kSC
� �kB,N,	� � kS � kSC

� �kB,N,	� . �16�

In the particular case of 	=1, Eqs. �14� and �15� have the
simplest form of

m�: kS 
 kSC
� �kB,N� 
 − �N − 1�kB −

�N − 1�N�2N − 1�
6

kB
2 ,

�17�

m�: kS � kSC
� �kB,N� 
 − �N − 1�kB +

�N − 1�N�2N − 1�
6

kB
2 .

�18�

The �kS ,kB� diagram for N=3 and 	=1 constructed in accor-
dance with formulas �17� and �18� is presented in Fig. 6.
Equations �17� and �18� can be used for an approximate de-
termination of the reduced surface and bulk anisotropy con-
stants, kS and kB, from the comparison of experiment and
theory. Indeed, if experimental data supply us with NSRT1
corresponding to the onset of the SRT1 from the perpendicu-
lar to the canted noncollinear state m�→m� and with NSRT2
corresponding to the onset of SRT2 from the canted to the
in-plane state m�→m��NSRT2�NSRT1�, then one should sub-
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stitute N with NSRT1 in Eq. �17� and with NSRT2 in Eq. �18�
and, thus, get a simple set of two equations with the reduced
anisotropy constants kS and kB.

VI. BILAYER FILM

In the present section, we consider the magnetic proper-
ties of a bilayer film with competing anisotropies at two
sides of the bilayer and the ferromagnetic exchange interac-
tion between atomic layers. Although, the problem of a bi-
layer has been considered theoretically many times
before,6,26 to the best of our knowledge it has never been
solved properly. At the same time, bilayer is a system often
found in both bulk and thin-film magnetism. Indeed, in a two
layer ferromagnetic Co film deposited on Au substrata, the
anisotropy energy of the Co-Au interface and that of the free
surface are expected to be different. In a two layer Co film
sandwiched between two nonmagnetic films such as
Au /Co /W, the magnetic anisotropies of different interfaces
should also be different. Two sublattices in a wide variety of
ferrimagnetics can also exhibit different anisotropies. This, in
turn, can lead to noncollinear magnetic structures often
found, for instance, in compounds containing rare-earth met-
als. Integral to this is an artificially created magnetic
multilayer structures with alternating magnetic and nonmag-
netic layers such as Fe /V /Co /V /Fe /V /Co. In this
multilayer, the Fe layers exhibit the in-plane anisotropy
whereas Co layers exhibit the perpendicular anisotropy. The
interplay between the anisotropy energies of neighbor Fe and
Co layers and the ferromagnetic exchange interaction be-
tween them leads to a noncollinear magnetic structure. The
magnetic properties of inner layers, far from the edges of the
multilayer structure, have been described within a bilayer

approach.51 Finally, the consideration of the bilayer case
helps to outline some issues such as the order of the SRT and
the applicability of perturbation theory, which were not ana-
lyzed in the previous sections.

Here, we apply three different approaches in the investi-
gation of a bilayer. The first approach is conducted entirely
in the spirit of the present work; namely, it is devoted to the
derivation of the stability criteria of the perpendicular and
in-plane states. The corresponding formulas are presented in
Appendix A �Eq. �A7�� and in Appendix B �Eq. �B6��, re-
spectively. We have to note that the presence of the param-
eter 	 in Eqs. �A7� and �B6� might mislead the reader. Recall
that the parameter 	 characterizes the nonuniformity of the
exchange interaction in the surface region of a film, which in
the case of bilayer does not make any sense. Because of that,
in Eqs. �A7� and �B6� one should better put 	=1. This means
that the anisotropy energies at both sides of the film are
reduced by the exchange interaction between the two atomic
layers in the bilayer. We keep an arbitrary 	�0 in Eqs. �A7�
and �B6� just because we would like to stress that in the
particular case of a bilayer, the general formulas for the sta-
bility criteria of the perpendicular and in-plane states of a
film of thickness N �Eqs. �A22�, �A26�, �B3�, and �B5�� give
correct results �Eqs. �A7� and �B6�� for arbitrary 	. In addi-
tion, one should treat the diagram of the magnetic states of a
bilayer in coordinates �	 ,kS ,kB� presented in Fig. 1 as a dia-
gram in which all coordinates were obtained by dividing the
corresponding energies with the exchange interaction be-
tween the layers in the bulk sample. Definitely, the bulk ex-
change interaction is absent in the bilayer, but it is present in
bulk samples. Hence, one may use it for introducing the
reduced model parameters. We hope this will not cause any
misunderstanding in the treatment of the diagram for the
bilayer shown in Fig. 1.

In this section, we mostly address the diagram of mag-
netic states of a bilayer presented in Fig. 4 �green dashed and
solid lines�. In this �kS ,kB� diagram, the in-plane region is
situated above the green solid line and the perpendicular re-
gion lies below the dashed green line. The canted noncol-
linear region is between the green dashed and solid lines.
Here, we do not use the concept of the bulk anisotropy con-
stant kB because the very concept of a bulk layer is not ap-
plicable to the bilayer case. Hence, instead of parameters kS
and kB used in the previous sections, we use the reduced
anisotropy constants of each layer denoted here as kS1�kS
and kS2�kB. Then the stability criteria of the perpendicular
�Eq. �A7�� and in-plane �Eq. �B6�� states of a bilayer can be
written as

kS2 � kS2 max
� = 1,

kS1 � kSC1
� �N = 2� =

kS2

kS2 − 1
, �19�

kS2 � kS2 min
� = − 1,

kS1 � kSC1
� �N = 2� = −

kS2

kS2 + 1
. �20�

In these formulas the parameter 	 is set to 1. We have to note
that similar analytic expressions for the stability criteria of
the perpendicular and in-plane states were derived in Ref. 26.
However, the authors of Ref. 26 presented only the second

FIG. 6. �Color online� Diagram of magnetic states in coordi-
nates �kS ,kB� constructed in the approximation �kB��1 in the par-
ticular case 	=1 in accordance with Eqs. �17� and �18�. The region
corresponding to the perpendicular state of a film is situated below
the solid red line. The region corresponding to the in-plane state of
a film is situated above the solid blue line. The region correspond-
ing to the canted noncollinear state lies between the solid red and
solid blue lines. The dashed straight line shows the equality of the
thermodynamic potentials of the perpendicular and in-plane states
�Eq. �13��.
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line in Eqs. �19� and �20�. No conditions for the parameter
kS2 �first line in Eqs. �19� and �20�� were presented. We have
to note that the function on the right side of the equation in
the second line of Eqs. �19� and �20� is a hyperbola that
consists two branches separated by two asymptotes, vertical
and horizontal. Only one of these two branches represents
the perpendicular-canted noncollinear and in-plane-canted
noncollinear borders in the diagram, whereas the other
branch is irrelevant. Therefore, it is unclear how the authors
of Ref. 26 sorted out these lines in their work.

The derivation of the stability criteria of the perpendicular
and in-plane states of a bilayer is certainly a useful result.
However, it does not give any information about the order of
the SRT1 m�→m� as well as about the order of the subse-
quent SRT2 m�→m� observed in Co /Au films. Definitely,
the variation of the essentially integer parameter N cannot
shed light on the order of these SRTs. To approach this prob-
lem, we formulate it in the following way. Would the orien-
tation angles �1 and �2 change continuously when a point
crosses the border between the perpendicular and canted
noncollinear states in the �kS ,kB� diagram or would this
change be discontinuous? The same question holds in the
case of crossing the border between canted noncollinear and
in-plane states. The approach described below will help one
to answer these questions.

The second approach used in the present section is en-
tirely based on the Landau theory of the second-order phase
transitions. In the spirit of this theory, one should use the
concept of the order parameter and expand the thermody-
namic potential to the forth power of the order parameter,

� = A�2 + B�4, A = a�T − TC�, a � 0. �21�

It follows from Eq. �21� that coefficient A changes its sign
with temperature at some point TC called the Curie point.
The phase transition with temperature at TC is of the second
order if coefficient B is positive. For T�TC, the equilibrium
magnitude of the order parameter is equal to zero. For T
�TC, the equilibrium value of the order parameter is defined
as �=�a�TC−T� / �2B��0. Since in the vicinity of the Curie
point the order parameter � changes continuously with tem-
perature, the second-order phase transition is often called a
continuous phase transition.

Hence, following the Landau theory, one should choose
an order parameter, expand the thermodynamic potential to
the fourth order of the order parameter, and analyze the sign
of coefficients A and B. In terms of the model parameters
introduced above, the expression for the thermodynamic po-
tential of a bilayer can be written as

� = − cos��1 − �2� +
kS1

2
sin2 �1 +

kS2

2
sin2 �2. �22�

The minimization of the thermodynamic potential �Eq. �22��,
with respect to each of the orientation angles �1 and �2, gives
rise to the set of equations with respect to �1 and �2,

��

��1
= sin��1 − �2� + kS1 sin �1 cos �1 = 0,

��

��2
= − sin��1 − �2� + kS2 sin �2 cos �2 = 0. �23�

We first investigate the solution of Eq. �23� in the vicinity
of the in-plane-canted noncollinear border where the orien-
tation angles �1 and �2 are small, �1,2�1. Bearing this in
mind, one can express the orientation angle �2 via the orien-
tation angle �1, and the corresponding expression can be ex-
panded to the third power of �1

�2 =
1

2
arcsin� kS1

kS2
sin 2�1�

� −
kS1

kS2
�1 +

2

3

kS1

kS2
�1 − � kS1

kS2
�2��1

3. �24�

Then, one should expand the thermodynamic potential
�Eq. �21�� to the fourth power of each of the orientation
angles �1, �2, and substitute �2, with the expression given by
Eq. �24�. After some algebra, the final expression for the part
of the thermodynamic potential dependent on angle �1 can be
written as

�� =
1

2
�kS1 − � − kS2

kS2 + 1
���1

2 +
kS2

2 �kS2 + 2�2

8�kS2 + 1�4 �1
4. �25�

It follows from Eq. �25� that the first orientation angle �1
plays the role of an order parameter, and the expression for
the thermodynamic potential can be written in a form char-
acteristic of the Landau theory of the second-order phase
transitions. The comparison of Eqs. �25� and �21� shows that
the parameter kS1 plays the role of temperature. The expres-
sion corresponding to the Curie temperature in Eq. �25� is
determined by the expression kSC1=−kS2 / �kS2+1�, which ex-
actly coincides with the analytic expression of the stability
criterion of the in-plane state �Eq. �20��. The comparison of
Eqs. �21� and �25� also shows that coefficient B, the second
term in Eq. �25�, is positive. Therefore, we have to conclude
that in the diagram of the magnetic states of a bilayer, the
crossing of the in-plane-canted noncollinear border corre-
sponds to the continuous second-order phase transition �solid
green line in Fig. 4�.

To analyze the order of phase transition taking place at the
border between the perpendicular and canted noncollinear
regions, one should better introduce new orientation angles
�i=
 /2−�i and use the first orientation angle �1 as an order
parameter. In the vicinity of this border, the orientation
angles �1 and �2 are small, �1,2�1. Bearing this in mind,
one can perform a similar procedure to that used above and
again derive the expression for the part of the thermody-
namic potential dependent on angle �1,

�� = −
1

2
�kS1 −

kS2

kS2 − 1
��1

2 +
kS2

2 �kS2 − 2�2

8�kS2 − 1�4 �1
4. �26�

The analyses of Eq. �26� bring us to the conclusion that in
the diagram of the magnetic states of a bilayer, crossing the
perpendicular-canted noncollinear border corresponds to the
second-order phase transition �green dashed line in Fig. 4�.
In the present work, we do not perform the analysis of the
order of phase transitions for a film of arbitrary N. So far, we
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analyzed the order of the SRT m�→m� with temperature
only for a semi-infinite sample described by model �3�.50

Nevertheless, we are convinced that in the diagram of the
magnetic states of thin films, all the borders correspond to
the second-order phase transitions. Indeed, taking into ac-
count the anisotropy constants of the lowest order and finite
exchange interaction always results in a continuous phase
transition. To describe the discontinuous phase transition,
one should take into account either the higher order anisotro-
pies or the dependence of the exchange integral on distance,
or the biquadratic exchange interaction. The model consid-
ered in this work, Eq. �2� or �3�, does not contain such terms.

Actually in our treatment of the SRT m�→m� with film
thickness observed in Co /Au films, we do not move any
point in the diagram of magnetic states. We assume that point
A�kS,kB� corresponding to the Co /Au film is motionless �Sec.
IV�. The SRT is described using the fact that both the
perpendicular-canted noncollinear border and the in-plane-
canted noncollinear border move with film thickness, thus
changing their positions with respect to the point A�kS,kB�.
Since the crossing of each of these borders corresponds to
the continuous second-order phase transition, we consider
the spin reorientation observed in Co /Au films as a two-step
SRT consisting of two subsequent continuous second-order
SRTs: SRT1 m�→m� and SRT2 m�→m�.

The third approach used in this section for the investiga-
tion of the magnetic properties of a bilayer is based on the
analytical solution of the system of equations for the orien-
tation angles �1 and �2 �Eq. �23��. We have to note that this
system of equations has many solutions both trivial �such as
�1=�2=0, and �1=�2=
 /2� and nontrivial, corresponding to
a canted noncollinear state. Here, we search only for non-
trivial solutions. The number of nontrivial solutions is also
large. However, they are symmetrical; i.e., if �1 and �2 sat-
isfy the system of equations �Eq. �23��, then 
−�1 and 

−�2 also satisfy this system of equations as well as −�1 and
−�2, etc. Here, we only search for the nontrivial solution in
the interval �0,
 /2�.

It follows from Eq. �23� that the following equality is
valid:

kS1 sin �1 cos �1 + kS2 sin �2 cos �2 = 0. �27�

Since �i� �0,
 /2�, the nontrivial solution is possible only if
the anisotropy constants kS1 and kS2 have different signs, i.e.,
only in the case of competing anisotropies at two sides of the
bilayer. Dividing Eq. �27� by cos2 �1 and by cos2 �2 allows
one to rewrite Eq. �27� in terms only of tangents of the cor-
responding orientation angles

kS1tg�1�tg2�2 + 1� + kS2tg�2�tg2�1 + 1� = 0. �28�

Dividing each equation in Eq. �23� by cos �1 cos �2 allows
one to rewrite Eq. �23� in the form

tg�1 − tg�2 = − kS1tg�1
cos �1

cos �2
,

tg�1 − tg�2 = kS2tg�2
cos �2

cos �1
. �29�

Having multiplied these equations, one obtains the following
quadratic form:

tg2�2 − �2 − kS1kS2�tg�1tg�2 + tg2�1 = 0. �30�

The solution of Eq. �30� with respect to tg�2 gives a simple
relation between tg�1 and tg�2: tg�2=�±tg�1, where �± are
determined as

�± =
1

2
�2 − kS1kS2 ± �kS1kS2�kS1kS2 − 4�� . �31�

Finally, the substitution of tg�2 by the expression tg�2
=�±tg�1 in Eq. �28� allows one to express tg�1 and tg�2
using the model parameters

tg2�1 = −
kS1 + �±kS2

�±
2kS1 + �±kS2

,

tg2�2 = −
�±�kS1 + �±kS2�

�±kS1 + kS2
. �32�

It turns out that it is more convenient to deal with cosines
rather than with tangents. The corresponding formulas for
cosines follow from Eq. �32�. Simple analyses show that in
the left part of the �kS1 ,kS2� diagram, kS1�0, the expressions
for cos2 �1 and cos2 �2 are determined by the following for-
mulas:

cos2 �1 =
�−��−kS1 + kS2�

kS1��−
2 − 1�

,

cos2 �2 = −
��−kS1 + kS2�
kS2��−

2 − 1�
,

kS1 � 0. �33�

In the right part of the �kS1 ,kS2� diagram, kS1�0, the expres-
sions for cos2 �1 and cos2 �2 are determined by the following
formulas:

cos2 �1 =
�+��+kS1 + kS2�

kS1��+
2 − 1�

,

cos2 �2 = −
��+kS1 + kS2�
kS2��+

2 − 1�
,

kS1 � 0. �34�

Here, we restrict our investigation by the consideration only
of Eq. �34� that corresponds to the left part of the �kS1 ,kS2�
diagram, kS1�0. The analysis of Eq. �35� that corresponds to
the right part of the �kS1 ,kS2� diagram, kS1�0, is quite simi-
lar.

In Eq. �34�, the requirement cos �i=0, i=1,2 leads to the
condition �−kS1+kS2=0 for both �1 and �2. In the �kS1 ,kS2�
diagram, kS1�0, this condition is satisfied at the
perpendicular-canted noncollinear border �green dashed line
in Fig. 4� determined by the equation kS1=kS2 / �kS2−1�. This
means that at this border, each of orientation angles �1 and �2
is equal to 
 /2. In Eq. �34�, the condition cos �i=1, i=1,2
leads to the equality kS1+�−kS2=0 for both �1 and �2. In the
�kS1 ,kS2� diagram, kS1�0, this equality is satisfied at the
canted noncollinear-in-plane border �green solid line in Fig.
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4� determined by the equation kS1=−kS2 / �kS2+1�. This
means that at this border, both �1 and �2 are equal to zero.
Between the perpendicular-canted noncollinear and the
canted noncollinear-in-plane borders, both cos2 �1 and
cos2 �2 satisfy the condition 0�cos2 �1,2�1; i.e., between
these borders �green dashed and green solid lines in Fig. 4�,
the canted noncollinear state is realized. In the region corre-
sponding to the perpendicular state of a bilayer kS1
�kS2 / �kS2−1�, below the green dashed line in Fig. 4,
cos2 �1,2�0; i.e., the canted noncollinear state cannot be re-
alized; thus, the perpendicular state takes place. In the region
corresponding to the in-plane state, kS1�−kS2 / �kS2+1�,
above the green solid line in Fig. 4, cos2 �1,2�1, i.e., again
the canted noncollinear state cannot be realized and, thus, the
in-plane state takes place. Therefore, on the movement of an
imaginary point in the �kS1 ,kS2� diagram, kS1�0, the cross-
ing of the perpendicular-canted noncollinear border leads to
a continuous decrease in orientation angles �1,2 from 
 /2 in
the perpendicular region to smaller magnitudes in the canted
noncollinear region. Further movement of the point toward
the canted noncollinear-in-plane border leads to a further de-
crease in orientation angles �1,2 down to zero at the
noncollinear-in-plane border. In the in-plane region, both ori-
entation angles are zero, �1,2�0.

The analytic results for the orientation angles of a bilayer
could be useful for the verification of the validity of the
perturbation theory often used for solving the bilayer
problem.6,36 In these works, another definition of the orien-
tation angles is used: �i=
 /2−�i. Then the average orienta-
tion angle is introduced �̄= ��1+�2� /2, and the so-called
small parameter of the perturbation theory is defined as �i
��i− �̄, �1= ��1−�2� /2, and �2= ��2−�1� /2. The perturba-
tion theory is believed to be applicable if the condition

��i

�̄
� � ��1 − �2

�1 + �2
� � 1 �35�

is satisfied. To investigate this problem, we have to note that
following Eq. �33�, the following relation is valid:

cos2 �1 = K cos2 �2, K � − �−
kS2

kS1
. �36�

Therefore, in the case K=1, the orientation angles are equal
to each other and, thus, the perturbation theory is valid. The
larger the deviation of the coefficient K from 1 is, the larger
the deviation �i of the orientation angles from the average
value �̄ becomes and the less applicable the perturbation
theory is. A simple analysis shows that in the vicinity of the
in-plane-canted noncollinear border, coefficient K is equal to
1. Hence, in the vicinity of this border, the perturbation
theory works well. In the vicinity of the perpendicular-canted
noncollinear border, coefficient K is determined by the for-
mula K= �1−kS2�2. Taking this into account, relation �36� can
be rewritten in the vicinity of this border in terms of new
orientation angles in the following way:

sin �1 = �1 − kS2�sin �2. �37�

Since in the vicinity of the perpendicular-canted noncollinear
border the orientation angles �1 and �2 are small, one may

substitute Eq. �37� by �1��1−kS2��2. Then, Eq. �35� can be
written as

��i

�̄
� � ��1 − �2

�1 + �2
� =

kS2

2 − kS2
, kS2 � �0,1� . �38�

It follows from Eq. �38� that the smaller the magnitude of
parameter kS2 is, the more valid the perturbation theory is.
Therefore, the perturbation theory should work well in the
vicinity of the coordinate origin.

VII. CONCLUSIONS

The magnetic properties of ferromagnetic films with com-
peting surface and bulk anisotropies and nonuniform ex-
change interaction between atomic layers have been investi-
gated. The analytic expressions for the stability criteria of the
perpendicular and in-plane states of a film of an arbitrary
thickness have been derived in the framework of the layer by
layer approach. We find that in a film characterized by an
arbitrary layer-dependent ferromagnetic exchange interaction
between atomic layers and by the layer-dependent anisotropy
constants, a canted noncollinear state is favorable if neither
the perpendicular nor in-plane state is stable. The diagram of
the magnetic states of such films is presented, and the behav-
ior of the magnetic state of the film depending on its thick-
ness is analyzed. The applicability of the developed theory to
realistic magnetic systems is demonstrated for the case of the
two-step spin-reorientation transition observed in bare
Co /Au films. The analytic solution of the bilayer problem is
presented.

At present, a direct comparison of our theoretical results
with data obtained in experiments for systems, such as
Fe /Cu and Ni /Cu, is hardly possible. First, the domain wall
width in Fe and Ni is too large compared to the film thick-
ness. Because of that, the canted noncollinear state cannot
develop well in these films; i.e., the deviation of the magne-
tization vector of neighbor atomic layers from each other is
too small. Therefore, we stress once again that for the most
part in the present work, we focus on the consideration of the
canted noncollinear state. Second, the SRT in Fe /Cu goes via
the stripe domain structure, which is a nonuniform state in
the film plane. However, in the present work, we only con-
sider states that are uniform in the film plane.

Formally, the reversed SRT in Ni /Cu films with film
thickness from the in-plane to the perpendicular state could
be described within the proposed model. However, we be-
lieve that such a description would be too rough as the model
used in the present work is not really adequate for the Ni /Cu
system. Thin Ni films on Cu�001� and Cu�111� exhibit a
tetragonal lattice distortion in the pseudomorphic growth
range near the interface. This distorted fcc symmetry exhibits
a strong second-order magnetocrystalline anisotropy of the
corresponding film layers. With increasing thickness, the
strain in the Ni layers with a sufficient distance from the
Ni-Cu interface is released and the corresponding strain an-
isotropy disappears for these layers. The detailed description
of this physical picture is presented in the review of Ref. 6
�first paragraph in the left column on p. 152�. Bearing this in
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mind, one has to conclude that in contrast to the Co /Au
system, the interface anisotropy energy in a Ni /Cu film is
distributed among many Ni atomic layers in the interface
region. Because of that, the ascription of the interface aniso-
tropy constant to only one Ni atomic layer nearest to the
Ni-Cu interface seems to us to be a too rough approach.
Also, one has to conclude that the interface anisotropy en-
ergy depends on Ni film thickness. It means that the reversed
SRT in the Ni /Cu film should be treated as a movement of
the point corresponding to this system in the �kS ,kB� diagram
with film thickness rather than the movement of the borders
between regions with film thickness. In other words, one
may not treat the point corresponding to the Ni /Cu system as
motionless. However, in the present paper, we do not analyze
the dependence of anisotropy constants in the Ni /Cu system
on film thickness. Because of the reasons presented above,
we do not perform a detailed comparison of theoretical re-
sults obtained in the present work with experimental results
related to Fe /Cu and Ni /Cu systems.

We believe that besides bare Co /Au films, the most suit-
able experimental systems to be compared with our theory
could be magnetic sandwiches such as Au /Co /Au,
Au /Co /W, etc. First, these sandwiches demonstrate similar
SRTs with film thickness. The only difference is that com-
pared to the case of bare Co /Au films, the onset of the SRT
is shifted to larger film thicknesses. The nonmonotone de-
pendence of coercive force on film thickness was discovered
in these sandwiches.18 This phenomenon is very interesting.
To our opinion, it is caused by the difference between aniso-
tropy constants at two interfaces. However, to describe the
SRT and the nonmonotone dependence of coercive force on
film thickness in these sandwiches, one should take into ac-
count the difference of the anisotropy constants at both sides
of the film and the bulk anisotropy constant. This, in turn,
means that the model used in the present work should be
generalized for the case of arbitrary anisotropy constants at

both sides of the film. Currently, this problem is under our
consideration. We plan to present theoretical results related
to the description of these phenomena in sandwiches
Au /Co /Au and Au /Co /W in the nearest future.
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APPENDIX A: STABILITY CRITERION OF THE
PERPENDICULAR STATE OF A FILM OF FINITE

THICKNESS

The investigation of the stability of the perpendicular state
implies the analysis of an increment in the thermodynamic
potential �Eq. �3�� caused by a small deviation of the mag-
netization vector of each atomic layer from the perpendicular
orientation. If this increment is positive, the perpendicular
state is stable; when it becomes negative, the perpendicular
state is no longer stable. Bearing this in mind, we introduce
new orientation angles �n=�n−
 /2 and expand the thermo-
dynamic potential �Eq. �3�� to the second order of every �n.
The linear terms of the first order of �n are absent in such an
expansion because the necessary condition for the thermody-
namic potential to be minimal is the zero value of its first
derivative with respect to every �n. Then, the increment in
the thermodynamic potential �� can be written in the fol-
lowing form:

�� = �� TÂ�� , �A1�

where �� = ��1 ,�2 ,�3 ,… ,�N�. Operator Â in Eq. �A1� corre-
sponds to a square �N�N� three-diagonal symmetrical ma-
trix with real matrix elements,

AN�N =�
	�1 − kS�

2
−

	

2
0 0 . . . 0 0 0

−
	

2

− kB + 	 + 1

2
−

1

2
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−
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. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . −
kB

2
+ 1 −

1

2
0

0 0 0 0 . . . −
1

2
−

kB

2
+ 1 −

1

2

0 0 0 0 . . . 0 −
1

2
−

kB

2
+

1

2

� . �A2�
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Then, one should find the necessary and sufficient conditions
for the quadratic form �Eq. �A1�� to be positive. The positiv-
ity of the quadratic form resulting from the expansion of a
function into a series in the vicinity of some point means that
at this point the function is minimal.

The necessary and sufficient conditions for the quadratic
form �Eq. �A1�� to be positive could be obtained using the
Silvestre criterion known from the linear algebra. In accor-
dance with this criterion, the necessary and sufficient condi-
tion for the quadratic form �Eq. �A1�� to be positive is re-
duced to the requirement that each corner minor of matrix A
in Eq. �A2� must be positive,

d1A � �A11� � 0, d2A � �A11 A12

A21 A22
� � 0,

d3A � �A11 A12 A13

A21 A22 A23

A31 A32 A33
� � 0, ¯ . �A3�

The deviation of the diagonal elements in the upper left
corner of matrix �A2� from −kB /2+1 as well as the deviation
of the off-diagonal matrix elements from −1 /2 is caused by
the presence of a perturbation at the Co-Au interface. The
origin of this perturbation is the following. First, the ex-
change interaction between the interface Co-Au layer and the
neighbor Co layer differs from the exchange interaction be-
tween all the other Co layers. Second, there is no exchange
interaction between the Co-Au layer and the neighbor Au
layer. Here, we do not take into account the effect of mag-
netizing Au layers close to the Co-Au interface. Third, the
interface anisotropy constant differs from the bulk anisotropy
constant of Co. The difference between the diagonal element
in the down right corner of matrix �A2� and all the other
diagonal elements, −kB /2+1, is caused by the presence of a
perturbation at the surface of the Co film that is not covered
by Au. It originates from the absence of the exchange inter-
action between the surface Co layer and vacuum above the
free surface.

Introducing the notations ��−kB /2+1 and ���−kS

+kB� /2, it is possible to characterize all the matrix elements
in Eq. �A2� affected by surface and interface perturbations at
both sides of the Co film as

A11 = � −
1

2
+ � +

kS

2
�	 − 1� +

�	 − 1�
2

, A22 = � +
�	 − 1�

2
,

A12 = A21 = −
1

2
+

�	 − 1�
2

, ANN = � −
1

2
. �A4�

It follows from Eq. �A4� that all surface perturbations men-
tioned above are formally determined by the presence of the
term −1 /2 in A11 and ANN and the term � in A11, as well as by
the terms proportional to �	−1� in each matrix element in
Eq. �A4�.

Before the evaluation of the general expression for the
stability criterion of the perpendicular state of a film of arbi-
trary N, it is worth formulating this criterion for several par-
ticular cases: N=1, 2, 3, and 4. One should do this as the

corresponding matrices A for N=1, 2, and 3 do not coincide
with the general form of matrix �A2�, and they start to coin-
cide with it only for N�4. Moreover, the validity of the
general formula for the stability criterion must be verified by
comparing the general result with those obtained in several
particular cases. Finally, the consideration of those particular
cases allows one to reveal some trends in the evolution of the
criterion with film thickness N, which we shall later use in
the derivation of the general formula.

N=1. We assume that the magnetic Co film does not in-
teract with the neighbor Au layers as we do not account for
the effect of magnetizing neighbor Au layers by the Co
monolayer. Most likely, this approximation is wrong for a Co
monolayer deposited on Pd substrata because, in contrast to
Au, Pd exhibits substantial polarizability. By this reason, for
the Co /Au film all the exchange interactions in model �2� are
equal to zero and the transition from Eq. �2� to the reduced
thermodynamic potential �Eq. �3�� is not correct. In this case,
one should analyze model �2� that for N=1 contains only one
term KSMS

2 sin2 �1. Hence, if KS�0, then the perpendicular
state �1=
 /2 is favorable; if KS�0, then the in-plane state
�1=0 is favorable.

N=2. Matrix A2�2 has the following form:

A2�2 = �
	�1 − kS�

2
−

	

2

−
	

2

− kB + 	

2
� . �A5�

From the requirement of the positivity of the first minor d1A
of matrix �A5�, we get the first condition for the surface
anisotropy constant kS,

d1A =
	�1 − kS�

2
� 0 ⇒ kS � 1, �A6�

which will be repeated in the analyses of the sign of d1A for
arbitrary N. Because of that, further on we shall not mention
condition �A6� and believe it is always satisfied. The require-
ment d2A�0 can be written as kS�kB−	��kB. If kB�	, then
the parameter kS must satisfy the condition kS�kB / �kB−	�.
However, this condition is in contradiction with the condition
kS�1 �Eq. �A6��. Hence, kB must satisfy the opposite condi-
tion kB�	. This result is remarkable since in the considered
case, the parameter 	�0 can formally be arbitrarily large
and, thus, the perpendicular state can be realized for an arbi-
traril large kB, satisfying the condition kB�	. In contrast to
this, it will be shown below that for N�2, the maximal
magnitude of kB corresponding to the perpendicular state is
always bounded from above. Finally, the stability criterion of
the perpendicular state for N=2 is determined by the follow-
ing formulas:

kB � kB max
� �2� = 	 ,

kS � kSC
� �2� =

kB

kB − 	
. �A7�
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N=3. Matrix A3�3 has the following form:

A3�3 = �
	�1 − kS�

2
−

	

2
0

−
	

2

− kB + 	 + 1

2
−

1

2

0 −
1

2
−

kB

2
+

1

2

� . �A8�

The requirement d1A�0 leads to the condition kS�1 �Eq.
�A6��. The requirement d2A�0 can be written as kS�kB− �	
+1���kB−1. If kB� �	+1�, then kS must satisfy the condi-
tion kS� �kB−1� / �kB− �	+1��. However, this condition is in
contradiction with the condition kS�1 �Eq. �A6��. Therefore,
kB must satisfy the opposite condition kB� �	+1�; thus, kS

must satisfy the condition kS� �kB−1� / �kB− �	+1��. We
have to note that the latter condition for kS is more restrictive
than condition �A6�. This implies the following: The require-
ment of the positivity of each next minor results in more
restrictive conditions for kS and kB than the condition that
follows from the requirement of the positivity of the previous
minor. The requirement d3A�0 for matrix �A8� can be writ-
ten as

kS�kB
2 − kB�	 + 2� + 	� � kB�kB − 2� . �A9�

One can show that the possible values of the parameter �	
+1� lie within the interval limited by the solutions of the
quadratic polynomial with respect to kB in the left part of Eq.
�A9�,

	 + 2 − �	2 + 4

2
� 	 + 1 �

	 + 2 + �	2 + 4

2
. �A10�

Because of the condition kB�	+1 obtained above, there are
two intervals for kB. The first of these is kB� ��	+2
−�	2+4� /2;	+1�. In this case, one has �kB

2 −kB�	+2�+	�
�0; thus, kS must satisfy the condition kS� �kB�kB−2�� / �kB

2

−kB�	+2�+	�. However, this condition is in contradiction
with the condition that follows from the requirement of the
positivity of the second minor obtained above: kS� �kB

−1� / �kB− �	+1��. Therefore, kB belongs to the second inter-
val: kB� �−� ; �	+2−�	2+4� /2�. In this case, kS must sat-
isfy the following condition: kS� �kB�kB−2�� / �kB

2 −kB�	+2�
+	�. Note that this condition for kS is more restrictive than
the condition obtained from the requirement of the positivity
of the second minor. Finally, in the case of N=3, the stability
criterion of the perpendicular state can be written as

kB � kB max
� �3� =

	 + 2 − �	2 + 4

2
� 1,

kS � kSC
� �3� =

kB�kB − 2�
kB

2 − �	 + 2�kB + 	
. �A11�

This result is remarkable. First, kB max
� �3� equals zero at 	

=0, and if 	 approaches infinity, 	→ +�, kB max
� �3� monoto-

nously increases up to 1. It means that for kB�1, the per-
pendicular state cannot occur for any magnitude of 	�0.

This result differs from the result obtained for N=2. Below,
it will be shown that for any N�2, the parameter kB max

� �N�
is bounded from above. It is a general property of the stabil-
ity criterion of the perpendicular state for arbitrary N�2.
Second, kB max

� �3� is determined by the minimal positive root
of the polynomial in the denominator in Eq. �A11�. This is
characteristic of the stability criterion of the perpendicular
state for any integer N�2.

N=4. Matrix A4�4 has the following form:

A4�4 = �
	�1 − kS�

2
−

	

2
0 0

−
	

2

− kB + 	 + 1

2
−

1

2
0

0 −
1

2
−

kB

2
+ 1 −

1

2

0 0 −
1

2
−

kB

2
+

1

2

� .

�A12�

This is the last particular case we consider because in con-
trast to N=1, 2, and 3 in all cases with N�4, the form of the
matrix AN�N is the same; i.e., it no longer depends on N. The
requirements d1A�0, d2A�0 for matrix A4�4 give rise to
the same conditions for kS, kB as in the case of A3�3. The
requirement d3A�0 for matrix A4�4 differs from the require-
ment d3A�0 for matrix A3�3 and can be written as

kS�kB
2 − kB�	 + 3� + 2	 + 1� � kB

2 − 3kB + 1. �A13�

A detailed consideration of the requirement d3A�0 is crucial
for the present investigation since matrices AN�N are of the
same form for any N�4. In other words, the conditions for
kS, kB resulting from the requirement d3A�0 are general and
will be used below in order to derive a general formula for
the stability criterion for any integer N. One can show that
the parameter �	+1� is within the interval limited by the
roots of the quadratic polynomial with respect to kB in the
left-hand side of Eq. �A13� for any 	�0,

	 + 3 − �	2 − 2	 + 5

2
� 	 + 1 �

	 + 3 + �	2 − 2	 + 5

2
.

�A14�

Since the requirement d2A�0 for matrix A4�4 leads to the
condition kB�	+1, there are two possible intervals for kB.
The first interval is kB� ��	+3−�	2+4� /2;	+1�. Then, the
quadratic polynomial in the left-hand side of Eq. �A13� is
negative and, thus, the following condition results from Eq.
�A13�

kS �
kB

2 − 3kB + 1

kB
2 − kB�	 + 3� + 2	 + 1

. �A15�

However, condition �A15� contradicts the condition for kS
obtained from the requirement d2A�0 for matrix A4�4.
Therefore, one has to conclude that kB belongs to the inter-
val: kB� �−� ; �	+3−�	2−2	+5� /2�; i.e., the quadratic
polynomial in the left-hand side of Eq. �A13� is positive. If 	
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approaches infinity, 	→ +�, then the upper border of this
interval increases monotonously and approaches 2. There-
fore, for N�4 and 	�0, the perpendicular state cannot oc-
cur for kB�2. In the considered case, the condition for kS
resulting from the requirement d3A�0 can be written as

kS �
kB

2 − 3kB + 1

kB
2 − kB�	 + 3� + 2	 + 1

. �A16�

The requirement d4A�0 for matrix A4�4 can be written as

kS�kB�kB
2 − 4kB + 3� − 	�kB

2 − 3kB + 1�� � kB�kB
2 − 4kB + 3� .

�A17�

If the cubic polynomial with respect to kB �in square brackets
in the left-hand side of Eq. �A17�� is positive, then the con-
dition for kS, following from Eq. �A17�, contradicts the con-
dition for kS following from the requirement d3A�0 for ma-
trix A4�4. Therefore, we have to conclude that the cubic
polynomial in the square brackets in Eq. �A17� is negative.
Simple analyses of the inequality

kB�kB
2 − 4kB + 3� − 	�kB

2 − 3kB + 1� � 0 �A18�

taking account of the conditions for kB, following from the
requirement d3A�0, show that the parameter kB must be
smaller than the minimal positive root of the cubic polyno-
mial �Eq. �A18��. We denote this root as kB max

� �4�. For N
=4, this is the most restrictive condition for kB. Finally, in the
case of N=4, the stability criterion can be written as

kB � kB max
� �4� � 2�1 − cos�


5
�� ,

kS � kSC
� �4� =

kB�kB
2 − 4kB + 3�

kB�kB
2 − 4kB + 3� − 	�kB

2 − 3kB + 1�
.

�A19�

The expression for kB max
� �4� in Eq. �A19� is not shown be-

cause it is too bulky.
The derivation of the stability criterion of the perpendicu-

lar state for particular N=2, 3, and 4 �formulas �A7�, �A11�,
and �A19��, based on the requirement of the positivity of all
corner minors of the corresponding matrices �Eqs. �A5�,
�A8�, and �A12��, reveals the following trends.

�1� In every case considered above, there is the condition
kS�1 following from the requirement d1A�0. This condi-
tion does not depend on the value of N.

�2� The form of the matrix that determines the expression
for the minor dnA �4
n
N−1� does not change with the
minor index. The requirement of the positivity of every next
minor leads to a more restrictive condition from above for
the parameters kB and kS.

�3� The form of the matrix that corresponds to the last
minor dNA differs from that for every previous minor dnA
�2
n
N−1�. The most restrictive condition for kB and kS
follows from the requirement of the positivity of the last
minor dNA.

�4� For each integer N=2, 3, and 4 and 	�0, the magni-
tude of kB max

� �N� coincides with the minimal positive root of
the function in the denominator of the expression for kSC

� �N�.
It turns out that these statements are valid for all integer N

rather than only for N=2, 3, and 4. The first statement is
obvious. All the other statements can be proven using the
method of mathematical induction.

In terms of the model parameter kB, a laconic formulation
of the stability criterion of the perpendicular state is impos-
sible. However, the analytic form of this criterion can be
written in terms of determinants of the square �n�n� three-
diagonal matrix Cij =��ij −

1
2�ij+1− 1

2�ij−1,

Cij = �
� −

1

2
0 . . . 0 0 0

−
1

2
� −

1

2
0 . . . 0 0

0 −
1

2
� . . . . . . . . . 0

. . . 0 . . . . . . . . . 0 . . .

0 . . . . . . . . . � −
1

2
0

0 0 . . . 0 −
1

2
� −

1

2

0 0 0 . . . 0 −
1

2
�

� .

�A20�

For various values of the parameter �, the determinant of this
matrix has different forms,

det Cn�n =�
sinh ��n + 1�

2n sinh �
, � � 1, � = cosh �, � � 0

sin ��n + 1�
2n sin �

, − 1 
 � 
 1, � = cos �, 0 
 � 
 


�− 1�nsinh ��n + 1�
2n sinh �

, � � − 1, � = − cosh �, � � 0.
� �A21�
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For matrix AN�N �Eq. �A2��, � is determined by the expres-
sion �=−kB /2+1. This means that varying the model param-
eter kB, we have to consider all possible cases.

�1� −kB /2+1�−1⇒kB�4. The derivation of the stability
criterion for N=2, 3, and 4 has shown that for N�2 the
perpendicular state cannot occur for kB�2. Therefore, this
case can be ignored.

�2� −1
−kB /2+1
 +1⇒0
kB
4. Because of the re-
striction kB�2 mentioned above, it makes sense to consider
this case only within the interval 0
kB�2. This corre-
sponds to the experimental situation related to Co /Au films
where the bulk anisotropy constant favors the in-plane state.

In accordance with the expression for the model thermody-
namic potential, Eq. �3�, the in-plane state is realized for
positive bulk anisotropy constant kB.

�3� −kB /2+1� +1⇒kB�0. In the present work, we
search for the stability criterion of the perpendicular state for
arbitrary anisotropy constants kS and kB rather than only for
those that correspond to the magnetic properties of Co /Au
films. Therefore, this case needs to be considered to be able
to construct the general diagram of magnetic states of a film
with arbitrary kS and kB.

In accordance with what was said above, the stability cri-
terion of the perpendicular state for kB�0 can be written as

0 
 kB � kB max�N� � 2�1 − cos �*�, ��kB� = arccos�−
kB

2
+ 1� ,

kS 
 kSC
� �N� �

sin �N − 2 sin ��N − 1� + sin ��N − 2�
sin �N − sin ��N − 1� + �	 − 1��sin ��N − 1� − sin ��N − 2��

. �A22�

Here, �* is a minimal root of the equation in the interval
�0,
�,

sin �N − sin ��N − 1� + �	 − 1��sin ��N − 1� − sin ��N − 2��

= 0. �A23�

In the particular case 	=1, the expression for kB max
� �N� can

be obtained in a closed form,

	 = 1, kB max
� �N� = 2�1 − cos� 


2N − 1
�� . �A24�

In a more general case of 	�1, one can get the estimate
for kB max

� �N� from above. This estimate appears to be very
useful for plotting the diagram of magnetic states in coordi-
nates �	 ,kS ,kB� for arbitrary N,

kB max
� �N� � 2�1 − cos� 


2N − 3
�� . �A25�

It follows from Eq. �A22� that kSC
� �N��0, kB max

� �N+1�
�kB max

� �N�, kSC
� �N+1��kSC

� �N�, and limN→�kB max
� �N�=0.

This means that for kB�0, the region corresponding to the
perpendicular state in the �kS ,kB� diagram is situated in the
left part of the diagram �kS�0�. This region decreases mo-
notonously with film thickness N, and in the limiting case
N→� it totally disappears. Therefore, for kB�0, the exis-
tence of the perpendicular state is entirely determined by the
finite thickness of the film.

For kB�0, the stability criterion of the perpendicular state
of an N-layer film is the following:

kS � kSC
� �N� �

sinh �N − 2 sinh ��N − 1� + sinh ��N − 2�
sinh �N − sinh ��N − 1� + �	 − 1��sinh ��N − 1� − sinh ��N − 2��

,

��kB� = ln��−
kB

2
+ 1� +��−

kB

2
+ 1�2

− 1�, kB � 0. �A26�

�It follows from Eq. �A26� that 0�kSC
� �N��1, kSC

� �N+1�
�kSC

� �N�, and limN→�kSC
� �N��1. This means that for kB

�0 the region corresponding to the perpendicular state in the
diagram of magnetic states is confined to the right-hand side
by the curve determined by the function kS=kSC

� �N ,kB�. As

the film thickness increases, the right border of this region
shifts to the right. In the limiting case N→�, the right border
approaches the position that corresponds to the
perpendicular-canted noncollinear border for the semi-
infinite sample kSC

� �N→� ,kB��1.
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It can be shown that the substitution of � by the expres-
sions for ��kB�, defined by Eqs. �A22� and �A26�, in the
corresponding formulas for kSC

� �N� �Eqs. �A22� and �A26��
for a particular N leads to the same expression for kSC

� �N�
regardless of which formula, Eq. �A22� or �A26�, is used.
This is not a surprising result because no matter what kind
of parametrization is applied, cos �=−kB /2+1 or cosh �
=−kB /2+1 in both cases, one uses the same matrix �Eq.
�A2��.

Naturally, the analytic expressions for the stability crite-
rion of the perpendicular state �the dependence of kSC

� �N� on
kB�, following from Eq. �A22� or �A26�, for N=2, 3, and 4,
coincide with the results obtained above for the particular
cases �formulas �A7�, �A11�, and �A19��. To simplify the
construction of the diagram of magnetic states, one should
use the explicit expression for the dependence of kSC

� �N ,kB�
on kB. Since for large N these formulas are too bulky, we
write them in the following way:

kB � kB max
� �N� � 2�1 − cos� 


2N − 3
�� , �A27�

kS 
 kSC
� �N,kB� �

PN−1�kB� + PN−2�kB�
PN−1�kB� − �	 − 1�PN−2�kB�

. �A28�

Here, kB max
� �N� is a minimal positive root of the equation

PN−1�kB� − �	 − 1�PN−2�kB� = 0. �A29�

For 	�0, Eq. �A29� has N−1 real positive roots
kB1 ,kB2 , . . . ,kB�N−1�. Note that in the present work, we always
show the diagram of magnetic states in coordinates �kS ,kB�.
Because of that, these roots determine the position of the N
−1 horizontal asymptotes in the plot of kSC

� �N ,kB� �horizontal
axis� versus kB �vertical axis� �Eq. �A28��, and this plot con-
tains N curves separated from each other by �N−1� horizon-
tal asymptotes. In the �kS ,kB� plane, the border of the region
of the stability of the perpendicular state is determined by the
lowest curve situated below the lowest horizontal asymptote.
The position of this asymptote is determined by the right-
hand side of the inequality �Eq. �A27��. All the other
N−1 curves in the plot of kSC

� �N ,kB� versus kB are irrelevant.
The polynomials Pi�kB� necessary to obtain the depen-

dence of kSC
� �N ,kB� on kB for N=2,3 , . . . ,10 �Eq. �A28�� are

defined below,

P0�kB� = 1,

P1�kB� = kB − 1,

P2�kB� = kB
2 − 3kB + 1,

P3�kB� = kB
3 − 5kB

2 + 6kB − 1,

P4�kB� = kB
4 − 7kB

3 + 15kB
2 − 10kB + 1,

P5�kB� = kB
5 − 9kB

4 + 28kB
3 − 35kB

2 + 15kB − 1,

P6�kB� = kB
6 − 11kB

5 + 45kB
4 − 84kB

3 + 70kB
2 − 21kB + 1,

P7�kB� = kB
7 − 13kB

6 + 66kB
5 − 165kB

4 + 210kB
3 − 126kB

2 + 28kB

− 1,

P8�kB� = kB
8 − 15kB

7 + 91kB
6 − 286kB

5 + 495kB
4 − 462kB

3 + 210kB
2

− 36kB + 1,

P9�kB� = kB
9 − 17kB

8 + 120kB
7 − 455kB

6 + 1001kB
5 − 1287kB

4

+ 924kB
3 − 330kB

2 + 45kB − 1. �A30�

APPENDIX B: STABILITY CRITERION
OF THE IN-PLANE STATE OF A FILM

OF FINITE THICKNESS

The stability conditions for the in-plane state of a ferro-
magnetic film corresponding to the minimal magnitude of
the thermodynamic potential �Eq. �3�� can be found using the
same approach as the one described in Appendix A, i.e., the
approach based on the Silvestre criterion. One should expand
the thermodynamic potential �Eq. �3�� to the second order of
�n in the vicinity of the point �n=0, n=1,2 ,3 , . . . ,N. In this
expansion, the terms of the first order of �n are absent be-
cause at the point �n=0, n=1,2 ,3 , . . . ,N, the thermody-
namic potential is minimal, i.e., the first derivative of ther-
modynamic potential with respect to every �n equals zero.
Then, one should find the necessary and sufficient conditions
for the quadratic form

�� = ��TB̂�� �B1�

to be positive. Here, �� = ��1 ,�2 ,�3 ,… . ,�N�, �� is an incre-
ment in the thermodynamic potential �Eq. �3�� caused by a
deviation of the orientation angles �n from zero. The operator

B̂ in Eq. �B1� corresponds to a square �N�N� three-diagonal
symmetric matrix with real matrix elements
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BN�N =�
	�1 + kS�

2
−

	

2
0 0 . . . 0 0 0

−
	

2

+ kB + 	 + 1

2
−

1

2
0 . . . 0 0 0

0 −
1

2

kB

2
+ 1 −

1

2
. . . 0 0 0

0 0 −
1

2

kB

2
+ 1 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . .
kB

2
+ 1 −

1

2
0

0 0 0 0 . . . −
1

2

kB

2
+ 1 −

1

2

0 0 0 0 . . . 0 −
1

2

kB

2
+

1

2

� . �B2�

The comparison of matrix BN�N �Eq. �B2�� with matrix AN�N �Eq. �A2�� �Appendix A� shows that these matrices
have a similar form with the only difference that in matrix BN�N all the anisotropy constants have the opposite sign. Therefore,
the stability criterion of the in-plane state can be obtained from that for perpendicular state just by changing signs of kS and kB.

For negative kB, the stability criterion for a N-layer film can be written as

0 � kB � kB min
� �N� � − 2�1 − cos �*� � − 2�1 − cos� 


2N − 3
��, ��kB� = arccos� kB

2
+ 1� ,

kS � kSC
� �N� � −

sin �N − 2 sin ��N − 1� + sin ��N − 2�
sin �N − sin ��N − 1� + �	 − 1��sin ��N − 1� − sin ��N − 2��

. �B3�

Here, �* is a minimal positive root of the equation

sin �N − sin ��N − 1� + �	 − 1��sin ��N − 1� − sin ��N − 2�� = 0 �B4�

in the interval �0,
�. It follows from Eq. �B3� that for kB
0 there is a minimal value of bulk anisotropy constant kB min
� �N�

�0. If kB�kB min
� �N��0, the in-plane state cannot exist for any positive kS. It can be shown that kSC

� �N��0, kB min
� �N+1�

�kB min
� �N�, kSC

� �N+1��kSC
� �N�, and limN→�kB min

� �N�=0. This means that for kB
0, the region corresponding to the in-plane
state in the �kS ,kB� diagram is situated in the right part of the diagram �kS�0�. It decreases monotonously with thickness N,
and in the limiting case, N→� totally disappears. Therefore, the existence of the in-plane state for kB
0 is entirely deter-
mined by the finite thickness of the film.

For the positive values of kB, the stability criterion of the in-plane state of an N-layer film can be written as

kS � kSC
� �N� � −

sinh �N − 2 sinh ��N − 1� + sinh ��N − 2�
sinh �N − sinh ��N − 1� + �	 − 1��sinh ��N − 1� − sinh ��N − 2��

,

��kB� = ln�� kB

2
+ 1� +�� kB

2
+ 1�2

− 1�, kB � 0. �B5�

It follows from Eq. �B5� that for kB�0, one has −1
�kSC

� �N��0, kSC
� �N+1��kSC

� �N�, and limN→� kSC
� �N�=−1

+	 / �e�−1+	�. This means that for kB�0, the region corre-
sponding to the in-plane state in the diagram of magnetic
states is confined only from the left-hand side by the curve
determined by the negative function kS�kSC

� �N ,kB�. This re-

gion expands to the left with film thickness. In the limiting
case N→�, the left border of this region approaches the
border between the in-plane and canted noncollinear regions
for a semi-infinite sample.

It can be shown that for particular N, the substitution of �
in Eqs. �B3� and �B5� with the expression for ��kB� leads to
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the same expression for kSC
� �N� regardless of what formula is

used, Eq. �B3� or �B5�. This is not surprising because no
matter what kind of parametrization is applied in both cases,
one uses the same matrix �Eq. �B2��.

For N=2, the stability criterion of the in-plane state can
be written as

kB � − 	 ,

kS � kSC
� �2� � −

kB

kB + 	
. �B6�

For N=3, the stability criterion can be written as

kB � kB min
� �3� � −

	 + 2 − �	2 + 4

2
� − 1,

kS � kSC
� �3� � −

kB�kB + 2�
kB

2 + �	 + 2�kB + 	
. �B7�

For N=4, the criterion can be written as

kB � kB min
� �4� � − 2�1 − cos�


5
�� ,

kS � kSC
� �4� � −

kB�kB
2 + 4kB + 3�

kB�kB
2 + 4kB + 3� + 	�kB

2 + 3kB + 1�
.

�B8�

The expression for kB min
� �4� in Eq. �B8� is not shown be-

cause it is too bulky. kB min
� �4� is a maximal negative root of

the polynomial in the denominator of the expression for
kSC

� �4�.
It follows from Eq. �B7� and �B8� as well as from the

requirement of the positivity of the third minor of matrix
B4�4 that for N�2 the in-plane state cannot occur for the
bulk anisotropy constant kB�−2.

To simplify the construction of the diagram of magnetic
states for an arbitrary N, one should use the explicit expres-
sion for the dependence of kSC

� �N ,kB� on kB. Since this ex-

pression is too bulky for large N, we write it in the following
form:

kB � kB min
� �N,	� � − 2�1 − cos� 


2N − 3
�� , �B9�

kS � kSC
� �N,kB� � −

QN−1�kB� − QN−2�kB�
QN−1�kB� + �	 − 1�QN−2�kB�

.

�B10�

Here, kB min
� �N ,	� is a maximal negative root of the equation

QN−1�kB� + �	 − 1�QN−2�kB� = 0. �B11�

The polynomials Qi�kB� necessary for obtaining the expres-
sion kSC

� �N ,kB� for N=2,3 , . . . ,10 �Eq. �B10�� are defined
below,

Q0�kB� = 1,

Q1�kB� = kB + 1,

Q2�kB� = kB
2 + 3kB + 1,

Q3�kB� = kB
3 + 5kB

2 + 6kB + 1,

Q4�kB� = kB
4 + 7kB

3 + 15kB
2 + 10kB + 1,

Q5�kB� = kB
5 + 9kB

4 + 28kB
3 + 35kB

2 + 15kB + 1,

Q6�kB� = kB
6 + 11kB

5 + 45kB
4 + 84kB

3 + 70kB
2 + 21kB + 1,

Q7�kB� = kB
7 + 13kB

6 + 66kB
5 + 165kB

4 + 210kB
3 + 126kB

2 + 28kB

+ 1,

Q8�kB� = kB
8 + 15kB

7 + 91kB
6 + 286kB

5 + 495kB
4 + 462kB

3 + 210kB
2

+ 36kB + 1,

Q9�kB� = kB
9 + 17kB

8 + 120kB
7 + 455kB

6 + 1001kB
5 + 1287kB

4

+ 924kB
3 + 330kB

2 + 45kB + 1. �B12�
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